mfw_eval {multiwave} | R Documentation |
evaluation of multivariate Fourier Whittle estimator
Description
Evaluates the multivariate Fourier Whittle criterion at a given long-memory parameter value d
.
Usage
mfw_eval(d, x, m)
Arguments
d |
vector of long-memory parameters (dimension should match dimension of x). |
x |
data (matrix with time in rows and variables in columns). |
m |
truncation number used for the estimation of the periodogram. |
Details
The choice of m determines the range of frequencies used in the computation of
the periodogram, \lambda_j = 2\pi j/N
, j
= 1,... , m
. The optimal value depends on the spectral properties of the time series such as the presence of short range dependence. In Shimotsu (2007), m
is chosen to be equal to N^{0.65}
.
Value
multivariate Fourier Whittle estimator computed at point d
.
Author(s)
S. Achard and I. Gannaz
References
K. Shimotsu (2007) Gaussian semiparametric estimation of multivariate fractionally integrated processes Journal of Econometrics Vol. 137, N. 2, pages 277-310.
S. Achard, I. Gannaz (2016)
Multivariate wavelet Whittle estimation in long-range dependence. Journal of Time Series Analysis, Vol 37, N. 4, pages 476-512. http://arxiv.org/abs/1412.0391
.
S. Achard, I Gannaz (2019) Wavelet-Based and Fourier-Based Multivariate Whittle Estimation: multiwave. Journal of Statistical Software, Vol 89, N. 6, pages 1-31.
See Also
Examples
### Simulation of ARFIMA(0,d,0)
rho <- 0.4
cov <- matrix(c(1,rho,rho,1),2,2)
d <- c(0.4,0.2)
J <- 9
N <- 2^J
resp <- fivarma(N, d, cov_matrix=cov)
x <- resp$x
long_run_cov <- resp$long_run_cov
m <- 57 ## default value of Shimotsu
res_mfw <- mfw(x,m)
d <- res_mfw$d
G <- mfw_eval(d,x,m)
k <- length(d)
res_d <- optim(rep(0,k),mfw_eval,x=x,m=m,method='Nelder-Mead',lower=-Inf,upper=Inf)$par