| elnet.fit {multiview} | R Documentation |
Solve weighted least squares (WLS) problem for a single lambda value
Description
Solves the weighted least squares (WLS) problem for a single lambda value. Internal function that users should not call directly.
Usage
elnet.fit(
x,
y,
weights,
lambda,
alpha = 1,
intercept = TRUE,
thresh = 1e-07,
maxit = 1e+05,
penalty.factor = rep(1, nvars),
exclude = c(),
lower.limits = -Inf,
upper.limits = Inf,
warm = NULL,
from.glmnet.fit = FALSE,
save.fit = FALSE
)
Arguments
x |
Input matrix, of dimension |
y |
Quantitative response variable. |
weights |
Observation weights. |
lambda |
A single value for the |
alpha |
The elasticnet mixing parameter, with
|
intercept |
Should intercept be fitted (default=TRUE) or set to zero (FALSE)? |
thresh |
Convergence threshold for coordinate descent. Each inner
coordinate-descent loop continues until the maximum change in the objective
after any coefficient update is less than thresh times the null deviance.
Default value is |
maxit |
Maximum number of passes over the data; default is |
penalty.factor |
Separate penalty factors can be applied to each
coefficient. This is a number that multiplies |
exclude |
Indices of variables to be excluded from the model. Default is none. Equivalent to an infinite penalty factor. |
lower.limits |
Vector of lower limits for each coefficient; default
|
upper.limits |
Vector of upper limits for each coefficient; default
|
warm |
Either a |
from.glmnet.fit |
Was |
save.fit |
Return the warm start object? Default is FALSE. |
Details
WARNING: Users should not call elnet.fit directly. Higher-level functions
in this package call elnet.fit as a subroutine. If a warm start object
is provided, some of the other arguments in the function may be overriden.
elnet.fit is essentially a wrapper around a C++ subroutine which
minimizes
1/2 \sum w_i (y_i - X_i^T \beta)^2 + \sum \lambda \gamma_j
[(1-\alpha)/2 \beta^2+\alpha|\beta|],
over \beta, where \gamma_j is the relative penalty factor on the
jth variable. If intercept = TRUE, then the term in the first sum is
w_i (y_i - \beta_0 - X_i^T \beta)^2, and we are minimizing over both
\beta_0 and \beta.
None of the inputs are standardized except for penalty.factor, which
is standardized so that they sum up to nvars.
Value
An object with class "glmnetfit" and "glmnet". The list returned has
the same keys as that of a glmnet object, except that it might have an
additional warm_fit key.
a0 |
Intercept value. |
beta |
A |
df |
The number of nonzero coefficients. |
dim |
Dimension of coefficient matrix. |
lambda |
Lambda value used. |
dev.ratio |
The fraction of (null) deviance explained. The deviance calculations incorporate weights if present in the model. The deviance is defined to be 2*(loglike_sat - loglike), where loglike_sat is the log-likelihood for the saturated model (a model with a free parameter per observation). Hence dev.ratio=1-dev/nulldev. |
nulldev |
Null deviance (per observation). This is defined to be 2*(loglike_sat -loglike(Null)). The null model refers to the intercept model. |
npasses |
Total passes over the data. |
jerr |
Error flag, for warnings and errors (largely for internal debugging). |
offset |
Always FALSE, since offsets do not appear in the WLS problem. Included for compability with glmnet output. |
call |
The call that produced this object. |
nobs |
Number of observations. |
warm_fit |
If |