| ss {multivator} | R Documentation |
Overall variance matrix
Description
Calculates the maximum correlations possible consistent with the roughness parameters
Usage
ss(A, B, Ainv, Binv)
ss_matrix(hp,useM=TRUE)
ss_matrix_simple(hp,useM=TRUE)
Arguments
A, B |
Positive-definite matrices (roughness parameters) |
Ainv, Binv |
The inverses of |
hp |
An object of class |
useM |
Boolean, with default |
Details
Function ss() calculates the maximum possible correlation
between observations of two Gaussian processes at the same point
(equation 24 of the vignette):
Functions ss_matrix() and ss_matrix_simple() calculate
the maximum covariances among the types of object specified in the
hp argument, an object of class mhp. Function
ss_matrix() is the preferred form; function
ss_matrix_simple() is a less efficient, but more transparent,
version. The two functions should return identical output.
Value
Function ss() returns a scalar, ss_matrix() a matrix
of covariances.
Note
Thanks to Stephen Stretton for a crucial insight here
Author(s)
Robin K. S. Hankin
Examples
data(mtoys)
ss_matrix(toy_mhp)