multivariance.timing {multivariance} | R Documentation |
estimate of the computation time
Description
Estimates the computation time. This is relative rough. First run with determine.parameters = TRUE
(which takes a while). Then use the computed parameters to determine the computation time/or sample size.
Usage
multivariance.timing(
N = NULL,
n,
sectime = NULL,
coef.cdm = 15.2,
coef.prod = 2.1,
coef.sum = 1.05,
determine.parameters = FALSE
)
Arguments
N |
number of samples. If |
n |
number of variables |
sectime |
desired computation time in seconds. If |
coef.cdm |
computation time parameter for the doubly centered distance matrices |
coef.prod |
computation time parameter for matrix products |
coef.sum |
computation time parameter for matrix sums |
determine.parameters |
if |
Details
When detecting the parameters, the median of the computation times is used.
Examples
Ns = (1:100)*10
ns = 1:100
fulltime = outer(Ns,ns,FUN = function(N,n) multivariance.timing(N,n))
contour(Ns,ns,fulltime,xlab = "N",ylab = "n",
main = "computation time of multivariance in secs",
sub = "using default parameters -
use 'determine.parameters = TRUE' to compute machine specific values")
# Run to determine the parameters of your system:
# multivariance.timing(determine.parameters = TRUE)
[Package multivariance version 2.4.1 Index]