expand_decisions {multitool} | R Documentation |
Expand a set of multiverse decisions into all possible combinations
Description
Expand a set of multiverse decisions into all possible combinations
Usage
expand_decisions(.pipeline)
Arguments
.pipeline |
a |
Value
a nested data.frame
containing all combinations of arbitrary
decisions for a multiverse analysis. Decision types will become list
columns matching the type of decisions called along the pipeline (e.g.,
filters, variables, etc.). Any decisions containing
glue
syntax will be populated with the relevant
information.
Examples
library(tidyverse)
library(multitool)
the_data <-
data.frame(
id = 1:500,
iv1 = rnorm(500),
iv2 = rnorm(500),
iv3 = rnorm(500),
mod1 = rnorm(500),
mod2 = rnorm(500),
mod3 = rnorm(500),
cov1 = rnorm(500),
cov2 = rnorm(500),
dv1 = rnorm(500),
dv2 = rnorm(500),
include1 = rbinom(500, size = 1, prob = .1),
include2 = sample(1:3, size = 500, replace = TRUE),
include3 = rnorm(500)
)
full_pipeline <-
the_data |>
add_filters(include1 == 0,include2 != 3,include2 != 2, include3 > -2.5) |>
add_variables("ivs", iv1, iv2, iv3) |>
add_variables("dvs", dv1, dv2) |>
add_variables("mods", starts_with("mod")) |>
add_preprocess(process_name = "scale_iv", 'mutate({ivs} = scale({ivs}))') |>
add_preprocess(process_name = "scale_mod", mutate({mods} := scale({mods}))) |>
add_summary_stats("iv_stats", starts_with("iv"), c("mean", "sd")) |>
add_summary_stats("dv_stats", starts_with("dv"), c("skewness", "kurtosis")) |>
add_correlations("predictors", matches("iv|mod|cov"), focus_set = c(cov1,cov2)) |>
add_correlations("outcomes", matches("dv|mod"), focus_set = matches("dv")) |>
add_reliabilities("unp_scale", c(iv1,iv2,iv3)) |>
add_model("no covariates", lm({dvs} ~ {ivs} * {mods})) |>
add_model("with covariates", lm({dvs} ~ {ivs} * {mods} + cov1)) |>
add_postprocess("aov", aov())
pipeline_expanded <- expand_decisions(full_pipeline)
[Package multitool version 0.1.4 Index]