predictIWLS {multiridge} | R Documentation |
Predictions from ridge fits
Description
Produces predictions from ridge fits for new data.
Usage
predictIWLS(IWLSfit, X1new = NULL, Sigmanew)
Arguments
IWLSfit |
List, containing fits from either |
X1new |
Matrix. Dimension |
Sigmanew |
Matrix. Dimensions |
Details
Predictions rely purely on the linear predictors, and do not require producing the parameter vector.
Value
Numerical vector of linear predictor for the test samples.
See Also
IWLSridge
(IWLSCoxridge
) for fitting linear and
logistic ridge (Cox ridge). betasout
for obtaining parameter
estimates.
Scoring
to evaluate the predictions. A full demo and data are available from:
https://drive.google.com/open?id=1NUfeOtN8-KZ8A2HZzveG506nBwgW64e4
Examples
#Example below shows how to create the input argument Sigmanew (for simulated data)
#Simulate
Xbl1 <- matrix(rnorm(1000),nrow=10)
Xbl2 <- matrix(rnorm(2000),nrow=10)
Xbl1new <- matrix(rnorm(200),nrow=2)
Xbl2new <- matrix(rnorm(400),nrow=2)
#check whether dimensions are correct
nrow(Xbl1)==nrow(Xbl1new)
nrow(Xbl2)==nrow(Xbl2new)
ncol(Xbl1)==nrow(Xbl2)
ncol(Xbl1new)==ncol(Xbl2new)
#create cross-product
XXbl <- createXXblocks(list(Xbl1,Xbl2),list(Xbl1new,Xbl2new))
#suppose penalties for two data types equal 5,10, respectively
Sigmanew <- SigmaFromBlocks(XXbl,c(5,10))
#check dimensions (should be nnew x n)
dim(Sigmanew)