| predictIWLS {multiridge} | R Documentation |
Predictions from ridge fits
Description
Produces predictions from ridge fits for new data.
Usage
predictIWLS(IWLSfit, X1new = NULL, Sigmanew)
Arguments
IWLSfit |
List, containing fits from either |
X1new |
Matrix. Dimension |
Sigmanew |
Matrix. Dimensions |
Details
Predictions rely purely on the linear predictors, and do not require producing the parameter vector.
Value
Numerical vector of linear predictor for the test samples.
See Also
IWLSridge (IWLSCoxridge) for fitting linear and
logistic ridge (Cox ridge). betasout for obtaining parameter
estimates.
Scoring to evaluate the predictions. A full demo and data are available from:
https://drive.google.com/open?id=1NUfeOtN8-KZ8A2HZzveG506nBwgW64e4
Examples
#Example below shows how to create the input argument Sigmanew (for simulated data)
#Simulate
Xbl1 <- matrix(rnorm(1000),nrow=10)
Xbl2 <- matrix(rnorm(2000),nrow=10)
Xbl1new <- matrix(rnorm(200),nrow=2)
Xbl2new <- matrix(rnorm(400),nrow=2)
#check whether dimensions are correct
nrow(Xbl1)==nrow(Xbl1new)
nrow(Xbl2)==nrow(Xbl2new)
ncol(Xbl1)==nrow(Xbl2)
ncol(Xbl1new)==ncol(Xbl2new)
#create cross-product
XXbl <- createXXblocks(list(Xbl1,Xbl2),list(Xbl1new,Xbl2new))
#suppose penalties for two data types equal 5,10, respectively
Sigmanew <- SigmaFromBlocks(XXbl,c(5,10))
#check dimensions (should be nnew x n)
dim(Sigmanew)