strategy_multiattribute {multinomineq} | R Documentation |
Strategy Predictions for Multiattribute Decisions
Description
Returns a list defining the predictions of different choice strategies (e.g., TTB, WADD)
Usage
strategy_multiattribute(cueA, cueB, v, strategy, c = 0.5, prior = c(1, 1))
Arguments
cueA |
cue values of Option A (-1/+1 = negative/positive; 0 = missing). If a matrix is provided, each row defines one item type. |
cueB |
cue values of Option B (see |
v |
cue validities: probabilities that cues lead to correct decision. Must be of the same length as the number of cues. |
strategy |
strategy label, e.g., |
c |
defines the upper boundary for the error probabilities |
prior |
defines the prior distribution for the error probabilities
(i.e., truncated independent beta distributions |
Value
a strategy
object (a list) with the entries:
pattern
:a numeric vector encoding the predicted choice pattern by the sign (negative = Option A, positive = Option B, 0 = guessing). Identical error probabilities are encoded by using the same absolute number (e.g.,
c(-1,1,1)
defines one error probability with A,B,B predictions).c
:upper boundary of error probabilities
ordered
:whether error probabilities are linearly ordered by their absolute value in
pattern
(largest error: smallest absolute number)prior
:a numeric vector with two positive values specifying the shape parameters of the beta prior distribution (truncated to the interval
[0,c]
label
:strategy label
Examples
# single item type
v <- c(.9, .8, .7, .6)
ca <- c(1, -1, -1, 1)
cb <- c(-1, 1, -1, -1)
strategy_multiattribute(ca, cb, v, "TTB")
strategy_multiattribute(ca, cb, v, "WADDprob")
# multiple item types
data(heck2017_raw)
strategy_multiattribute(
heck2017_raw[1:10, c("a1", "a2", "a3", "a4")],
heck2017_raw[1:10, c("b1", "b2", "b3", "b4")],
v, "WADDprob"
)