nirt_to_Ab {multinomineq} | R Documentation |
Nonparametric Item Response Theory (NIRT)
Description
Provides the inequality constraints on choice probabilities implied by nonparametric item response theory (NIRT; Karabatsos, 2001).
Usage
nirt_to_Ab(N, M, options = 2, axioms = c("W1", "W2"))
Arguments
N |
number of persons / rows in item-response table |
M |
number of items / columns in item-response table |
options |
number of item categories/response options. If |
axioms |
which axioms should be included in the polytope representation |
Details
In contrast to parametric IRT models (e.g., the 1-parameter-logistic Rasch model), NIRT does not assume specific parametric shapes of the item-response and person-response functions. Instead, the necessary axioms for a unidimensional representation of the latent trait are tested directly.
The axioms are as follows:
"W1"
:Weak row/subject independence: Persons can be ordered on an ordinal scale independent of items.
"W2"
:Weak column/item independence: Items can be ordered on an ordinal scale independent of persons
"DC"
:Double cancellation: A necessary condition for a joint ordering of (person,item) pairs and an additive representation (i.e., an interval scale).
Note that axioms W1 and W2 jointly define the ISOP model by Scheiblechner (1995; isotonic ordinal probabilistic model) and the double homogeneity model by Mokken (1971). If DC is added, we obtain the ADISOP model by Scheiblechner (1999; ).
References
Karabatsos, G. (2001). The Rasch model, additive conjoint measurement, and new models of probabilistic measurement theory. Journal of Applied Measurement, 2(4), 389–423.
Karabatsos, G., & Sheu, C.-F. (2004). Order-constrained Bayes inference for dichotomous models of unidimensional nonparametric IRT. Applied Psychological Measurement, 28(2), 110-125. doi:10.1177/0146621603260678
Mokken, R. J. (1971). A theory and procedure of scale analysis: With applications in political research (Vol. 1). Berlin: Walter de Gruyter.
Scheiblechner, H. (1995). Isotonic ordinal probabilistic models (ISOP). Psychometrika, 60(2), 281–304. doi:10.1007/BF02301417
Scheiblechner, H. (1999). Additive conjoint isotonic probabilistic models (ADISOP). Psychometrika, 64(3), 295–316. doi:10.1007/BF02294297
Examples
# 5 persons, 3 items
nirt_to_Ab(5, 3)