hilbig2014 {multinomineq} | R Documentation |
Data: Multiattribute Decisions (Hilbig & Moshagen, 2014)
Description
Choice frequencies of multiattribute decisions across 3 item types (Hilbig & Moshagen, 2014).
Usage
hilbig2014
Format
A data frame 3 variables:
B1
Frequency of choosing Option B for Item Type 1
B2
Frequency of choosing Option B for Item Type 2
B3
Frequency of choosing Option B for Item Type 3
Details
Each participant made 32 choices for each of 3 item types with four cues (with validities .9, .8, .7, and .6).
The pattern of cue values of Option A and and B was as follows:
- Item Type 1:
A = (1, 1, 1, -1) vs. B = (-1, 1, -1, 1)
- Item Type 2:
A = (1, -1, -1, -1) vs. B = (-1, 1, 1, -1)
- Item Type 3:
A = (1, 1, 1, -1) vs. B = (-1, 1, 1, 1)
References
Hilbig, B. E., & Moshagen, M. (2014). Generalized outcome-based strategy classification: Comparing deterministic and probabilistic choice models. Psychonomic Bulletin & Review, 21(6), 1431-1443. doi:10.3758/s13423-014-0643-0
Examples
data(hilbig2014)
head(hilbig2014)
# validities and cue values
v <- c(.9, .8, .7, .6)
cueA <- matrix(
c(
1, 1, 1, -1,
1, -1, -1, -1,
1, 1, 1, -1
),
ncol = 4, byrow = TRUE
)
cueB <- matrix(
c(
-1, 1, -1, 1,
-1, 1, 1, -1,
-1, 1, 1, 1
),
ncol = 4, byrow = TRUE
)
# get strategy predictions
strategies <- c(
"baseline", "WADDprob", "WADD",
"TTB", "EQW", "GUESS"
)
preds <- strategy_multiattribute(cueA, cueB, v, strategies)
c <- c(1, rep(.5, 5)) # upper bound of probabilities
# use Bayes factor for strategy classification
n <- rep(32, 3)
strategy_postprob(k = hilbig2014[1:5, ], n, preds)