| heck2017_raw {multinomineq} | R Documentation | 
Data: Multiattribute Decisions (Heck, Hilbig & Moshagen, 2017)
Description
Raw data with multiattribute decisions (Heck, Hilbig & Moshagen, 2017).
Usage
heck2017_raw
Format
A data frame with 21 variables:
- vp
- ID code of participant 
- trial
- Trial index 
- pattern
- Number of cue pattern 
- ttb
- Prediction of take-the-best (TTB) 
- eqw
- Prediction of equal weights (EQW) 
- wadd
- Prediction of weighted additive (WADD) 
- logoddsdiff
- Log-odds difference (WADDprob) 
- ttbsteps
- Number of TTB steps (TTBprob) 
- itemtype
- Item type as in paper 
- reversedorder
- Whether item is reversed 
- choice
- Choice 
- rt
- Response time 
- choice.rev
- Choice (reversed) 
- a1
- Value of Cue 1 for Option A 
- a2
- Value of Cue 2 for Option A 
- a3
- Value of Cue 3 for Option A 
- a4
- Value of Cue 4 for Option A 
- b1
- Value of Cue 1 for Option B 
- b2
- Value of Cue 2 for Option B 
- b3
- Value of Cue 3 for Option B 
- b4
- Value of Cue 4 for Option B 
Details
Each participant made 40 choices for each of 4 item types with four cues
(with validities .9, .8, .7, and .6).
Individual choice freqeuncies are available as heck2017
References
Heck, D. W., Hilbig, B. E., & Moshagen, M. (2017). From information processing to decisions: Formalizing and comparing probabilistic choice models. Cognitive Psychology, 96, 26-40. doi:10.1016/j.cogpsych.2017.05.003
See Also
heck2017 for the aggregated choice frequencies per item type.
Examples
data(heck2017_raw)
head(heck2017_raw)
# get cue values, validities, and predictions
cueA <- heck2017_raw[, paste0("a", 1:4)]
cueB <- heck2017_raw[, paste0("b", 1:4)]
v <- c(.9, .8, .7, .6)
strat <- strategy_multiattribute(
  cueA, cueB, v,
  c(
    "TTB", "TTBprob", "WADD",
    "WADDprob", "EQW", "GUESS"
  )
)
# get unique item types
types <- strategy_unique(strat)
types$unique
# get table of choice frequencies for analysis
freq <- with(
  heck2017_raw,
  table(vp, types$item_type, choice)
)
freqB <- freq[, 4:1, 1] + # reversed items: Option A
  freq[, 5:8, 2] # non-rev. items: Option B
head(40 - freqB)
data(heck2017)
head(heck2017) # same frequencies (different order)
# strategy classification
pp <- strategy_postprob(
  freqB[1:4, ], rep(40, 4),
  types$strategies
)
round(pp, 3)