heck2017 {multinomineq} | R Documentation |
Data: Multiattribute Decisions (Heck, Hilbig & Moshagen, 2017)
Description
Choice frequencies with multiattribute decisions across 4 item types (Heck, Hilbig & Moshagen, 2017).
Usage
heck2017
Format
A data frame 4 variables:
B1
Frequency of choosing Option B for Item Type 1
B2
Frequency of choosing Option B for Item Type 2
B3
Frequency of choosing Option B for Item Type 3
B4
Frequency of choosing Option B for Item Type 4
Details
Each participant made 40 choices for each of 4 item types with four cues (with validities .9, .8, .7, and .6). The pattern of cue values of Option A and and B was as follows:
- Item Type 1:
A = (-1, 1, 1, -1) vs. B = (-1, -1, -1, -1)
- Item Type 2:
A = (1, -1, -1, 1) vs. B = (-1, 1, -1, 1)
- Item Type 3:
A = (-1, 1, 1, 1) vs. B = (-1, 1, 1, -1)
- Item Type 4:
A = (1, -1, -1, -1) vs. B = (-1, 1, 1, -1)
Raw data are available as heck2017_raw
References
Heck, D. W., Hilbig, B. E., & Moshagen, M. (2017). From information processing to decisions: Formalizing and comparing probabilistic choice models. Cognitive Psychology, 96, 26-40. doi:10.1016/j.cogpsych.2017.05.003
Examples
data(heck2017)
head(heck2017)
n <- rep(40, 4)
# cue validities and values
v <- c(.9, .8, .7, .6)
cueA <- matrix(
c(
-1, 1, 1, -1,
1, -1, -1, 1,
-1, 1, 1, 1,
1, -1, -1, -1
),
ncol = 4, byrow = TRUE
)
cueB <- matrix(
c(
-1, -1, -1, -1,
-1, 1, -1, 1,
-1, 1, 1, -1,
-1, 1, 1, -1
),
ncol = 4, byrow = TRUE
)
# get predictions
strategies <- c(
"baseline", "WADDprob", "WADD",
"TTBprob", "TTB", "EQW", "GUESS"
)
strats <- strategy_multiattribute(cueA, cueB, v, strategies)
# strategy classification with Bayes factor
strategy_postprob(heck2017[1:4, ], n, strats)