markCJS {multimark} | R Documentation |
Fit open population survival models for “traditional” capture-mark-recapture data consisting of a single mark type
Description
This function fits Cormack-Jolly-Seber (CJS) open population models for survival probability (\phi
) and capture probability (p
) for “traditional” capture-mark-recapture data consisting of a single mark type. Using Bayesian analysis methods, Markov chain Monte Carlo (MCMC) is used to draw samples from the joint posterior distribution.
Usage
markCJS(
Enc.Mat,
covs = data.frame(),
mod.p = ~1,
mod.phi = ~1,
parms = c("pbeta", "phibeta"),
nchains = 1,
iter = 12000,
adapt = 1000,
bin = 50,
thin = 1,
burnin = 2000,
taccept = 0.44,
tuneadjust = 0.95,
proppbeta = 0.1,
propzp = 1,
propsigmap = 1,
propphibeta = 0.1,
propzphi = 1,
propsigmaphi = 1,
pbeta0 = 0,
pSigma0 = 1,
phibeta0 = 0,
phiSigma0 = 1,
l0p = 1,
d0p = 0.01,
l0phi = 1,
d0phi = 0.01,
initial.values = NULL,
link = "probit",
printlog = FALSE,
...
)
Arguments
Enc.Mat |
A matrix of observed encounter histories with rows corresponding to individuals and columns corresponding to sampling occasions. With a single mark type, encounter histories consist of only non-detections (0) and type 1 encounters (1). |
covs |
A data frame of temporal covariates for detection probabilities (ignored unless |
mod.p |
Model formula for detection probability ( |
mod.phi |
Model formula for survival probability ( |
parms |
A character vector giving the names of the parameters and latent variables to monitor. Possible parameters are probit-scale detection probability parameters (" |
nchains |
The number of parallel MCMC chains for the model. |
iter |
The number of MCMC iterations. |
adapt |
Ignored; no adaptive phase is needed for "probit" link. |
bin |
Ignored; no adaptive phase is needed for "probit" link. |
thin |
Thinning interval for monitored parameters. |
burnin |
Number of burn-in iterations ( |
taccept |
Ignored; no adaptive phase is needed for "probit" link. |
tuneadjust |
Ignored; no adaptive phase is needed for "probit" link. |
proppbeta |
Ignored; no adaptive phase is needed for "probit" link. |
propzp |
Ignored; no adaptive phase is needed for "probit" link. |
propsigmap |
Ignored; no adaptive phase is needed for "probit" link. |
propphibeta |
Ignored; no adaptive phase is needed for "probit" link. |
propzphi |
Ignored; no adaptive phase is needed for "probit" link. |
propsigmaphi |
Ignored; no adaptive phase is needed for "probit" link. |
pbeta0 |
Scaler or vector (of length k) specifying mean of pbeta ~ multivariateNormal(pbeta0, pSigma0) prior. If |
pSigma0 |
Scaler or k x k matrix specifying covariance matrix of pbeta ~ multivariateNormal(pbeta0, pSigma0) prior. If |
phibeta0 |
Scaler or vector (of length k) specifying mean of phibeta ~ multivariateNormal(phibeta0, phiSigma0) prior. If |
phiSigma0 |
Scaler or k x k matrix specifying covariance matrix of phibeta ~ multivariateNormal(phibeta0, phiSigma0) prior. If |
l0p |
Specifies "shape" parameter for [sigma2_zp] ~ invGamma(l0p,d0p) prior. Default is |
d0p |
Specifies "scale" parameter for [sigma2_zp] ~ invGamma(l0p,d0p) prior. Default is |
l0phi |
Specifies "shape" parameter for [sigma2_zphi] ~ invGamma(l0phi,d0phi) prior. Default is |
d0phi |
Specifies "scale" parameter for [sigma2_zphi] ~ invGamma(l0phi,d0phi) prior. Default is |
initial.values |
OOptional list of |
link |
Link function for survival and capture probabilities. Only probit link is currently implemented. |
printlog |
Logical indicating whether to print the progress of chains and any errors to a log file in the working directory. Ignored when |
... |
Additional " |
Details
The first time markCJS
(or markClosed
) is called, it will likely produce a firewall warning alerting users that R has requested the ability to accept incoming network connections. Incoming network connections are required to use parallel processing as implemented in multimarkCJS
. Note that setting parms="all"
is required for any markCJS
model output to be used in multimodelCJS
.
Value
A list containing the following:
mcmc |
Markov chain Monte Carlo object of class |
mod.p |
Model formula for detection probability (as specified by |
mod.phi |
Model formula for survival probability (as specified by |
mod.delta |
Formula always |
DM |
A list of design matrices for detection and survival probability respectively generated by |
initial.values |
A list containing the parameter and latent variable values at iteration |
mms |
An object of class |
Author(s)
Brett T. McClintock
See Also
Examples
# These examples are excluded from testing to reduce package check time
# Example uses unrealistically low values for nchain, iter, and burnin
#Simulate open population data using defaults
data <- simdataCJS(delta_1=1,delta_2=0)$Enc.Mat
#Fit default open population model
sim.dot <- markCJS(data)
#Posterior summary for monitored parameters
summary(sim.dot$mcmc)
plot(sim.dot$mcmc)
#Fit ``age'' model with 2 age classes (e.g., juvenile and adult) for survival
#using 'parameters' and 'right' arguments from RMark::make.design.data
sim.age <- markCJS(data,mod.phi=~age,
parameters=list(Phi=list(age.bins=c(0,1,4))),right=FALSE)
summary(getprobsCJS(sim.age))