| markCJS {multimark} | R Documentation | 
Fit open population survival models for “traditional” capture-mark-recapture data consisting of a single mark type
Description
This function fits Cormack-Jolly-Seber (CJS) open population models for survival probability (\phi) and capture probability (p) for “traditional” capture-mark-recapture data consisting of a single mark type. Using Bayesian analysis methods, Markov chain Monte Carlo (MCMC) is used to draw samples from the joint posterior distribution.
Usage
markCJS(
  Enc.Mat,
  covs = data.frame(),
  mod.p = ~1,
  mod.phi = ~1,
  parms = c("pbeta", "phibeta"),
  nchains = 1,
  iter = 12000,
  adapt = 1000,
  bin = 50,
  thin = 1,
  burnin = 2000,
  taccept = 0.44,
  tuneadjust = 0.95,
  proppbeta = 0.1,
  propzp = 1,
  propsigmap = 1,
  propphibeta = 0.1,
  propzphi = 1,
  propsigmaphi = 1,
  pbeta0 = 0,
  pSigma0 = 1,
  phibeta0 = 0,
  phiSigma0 = 1,
  l0p = 1,
  d0p = 0.01,
  l0phi = 1,
  d0phi = 0.01,
  initial.values = NULL,
  link = "probit",
  printlog = FALSE,
  ...
)
Arguments
| Enc.Mat | A matrix of observed encounter histories with rows corresponding to individuals and columns corresponding to sampling occasions. With a single mark type, encounter histories consist of only non-detections (0) and type 1 encounters (1). | 
| covs | A data frame of temporal covariates for detection probabilities (ignored unless  | 
| mod.p | Model formula for detection probability ( | 
| mod.phi | Model formula for survival probability ( | 
| parms | A character vector giving the names of the parameters and latent variables to monitor. Possible parameters are probit-scale detection probability parameters (" | 
| nchains | The number of parallel MCMC chains for the model. | 
| iter | The number of MCMC iterations. | 
| adapt | Ignored; no adaptive phase is needed for "probit" link. | 
| bin | Ignored; no adaptive phase is needed for "probit" link. | 
| thin | Thinning interval for monitored parameters. | 
| burnin | Number of burn-in iterations ( | 
| taccept | Ignored; no adaptive phase is needed for "probit" link. | 
| tuneadjust | Ignored; no adaptive phase is needed for "probit" link. | 
| proppbeta | Ignored; no adaptive phase is needed for "probit" link. | 
| propzp | Ignored; no adaptive phase is needed for "probit" link. | 
| propsigmap | Ignored; no adaptive phase is needed for "probit" link. | 
| propphibeta | Ignored; no adaptive phase is needed for "probit" link. | 
| propzphi | Ignored; no adaptive phase is needed for "probit" link. | 
| propsigmaphi | Ignored; no adaptive phase is needed for "probit" link. | 
| pbeta0 | Scaler or vector (of length k) specifying mean of pbeta ~ multivariateNormal(pbeta0, pSigma0) prior. If  | 
| pSigma0 | Scaler or k x k matrix specifying covariance matrix of pbeta ~ multivariateNormal(pbeta0, pSigma0) prior. If  | 
| phibeta0 | Scaler or vector (of length k) specifying mean of phibeta ~ multivariateNormal(phibeta0, phiSigma0) prior. If  | 
| phiSigma0 | Scaler or k x k matrix specifying covariance matrix of phibeta ~ multivariateNormal(phibeta0, phiSigma0) prior. If  | 
| l0p | Specifies "shape" parameter for [sigma2_zp] ~ invGamma(l0p,d0p) prior. Default is  | 
| d0p | Specifies "scale" parameter for [sigma2_zp] ~ invGamma(l0p,d0p) prior. Default is  | 
| l0phi | Specifies "shape" parameter for [sigma2_zphi] ~ invGamma(l0phi,d0phi) prior. Default is  | 
| d0phi | Specifies "scale" parameter for [sigma2_zphi] ~ invGamma(l0phi,d0phi) prior. Default is  | 
| initial.values | OOptional list of  | 
| link | Link function for survival and capture probabilities. Only probit link is currently implemented. | 
| printlog | Logical indicating whether to print the progress of chains and any errors to a log file in the working directory. Ignored when  | 
| ... | Additional " | 
Details
The first time markCJS (or markClosed) is called, it will likely produce a firewall warning alerting users that R has requested the ability to accept incoming network connections. Incoming network connections are required to use parallel processing as implemented in multimarkCJS. Note that setting parms="all" is required for any markCJS model output to be used in multimodelCJS.
Value
A list containing the following:
| mcmc | Markov chain Monte Carlo object of class  | 
| mod.p | Model formula for detection probability (as specified by  | 
| mod.phi | Model formula for survival probability (as specified by  | 
| mod.delta | Formula always  | 
| DM | A list of design matrices for detection and survival probability respectively generated by  | 
| initial.values | A list containing the parameter and latent variable values at iteration  | 
| mms | An object of class  | 
Author(s)
Brett T. McClintock
See Also
Examples
# These examples are excluded from testing to reduce package check time
# Example uses unrealistically low values for nchain, iter, and burnin
#Simulate open population data using defaults
data <- simdataCJS(delta_1=1,delta_2=0)$Enc.Mat
#Fit default open population model
sim.dot <- markCJS(data)
#Posterior summary for monitored parameters
summary(sim.dot$mcmc)
plot(sim.dot$mcmc)
#Fit ``age'' model with 2 age classes (e.g., juvenile and adult) for survival
#using 'parameters' and 'right' arguments from RMark::make.design.data
sim.age <- markCJS(data,mod.phi=~age,
           parameters=list(Phi=list(age.bins=c(0,1,4))),right=FALSE)
summary(getprobsCJS(sim.age))