rgr.ols {multilevel} | R Documentation |
Random Group Resampling OLS Regression
Description
Uses Random Group Resampling (RGR) within an Ordinary Least Square (OLS) framework to contrast actual group results with pseudo group results. This specific function performs an RGR on an OLS hierarchical OLS model with two predictors as in Bliese & Halverson (2002). To run this analysis on data with more predictors, the function would have to be modified.
Usage
rgr.ols(xdat1,xdat2,ydata,grpid,nreps)
Arguments
xdat1 |
The first predictor. |
xdat2 |
The second predictor. |
ydata |
The outcome. |
grpid |
The group identifier. |
nreps |
The number of pseudo groups to create. |
Value
A matrix containing mean squares. Each row provides mean square values for a single pseudo group iteration
Author(s)
Paul Bliese pdbliese@gmail.com
References
Bliese, P. D., & Halverson, R. R. (2002). Using random group resampling in multilevel research. Leadership Quarterly, 13, 53-68.
See Also
Examples
data(lq2002)
RGROUT<-rgr.ols(lq2002$LEAD,lq2002$TSIG,lq2002$HOSTILE,lq2002$COMPID,100)
#Compare values to those reported on p.62 in Bliese & Halverson (2002)
summary(RGROUT)
[Package multilevel version 2.7 Index]