boot.icc {multilevel} | R Documentation |
Bootstrap ICC values in 2-level data
Description
An experimental function that implements a 2-level bootstrap to estimate non-parametric bootstrap confidence intervals of the ICC1 using the percentile method. The bootstrap first draws a sample of level-2 units with replacement, and in a second stage draws a sample of level-1 observations with replacement from the level-2 units. Following each bootstrap replication, the ICC(1) is estimated using the lme function (default) or the ANOVA method.
Usage
boot.icc(x, grpid, nboot, aov.est=FALSE)
Arguments
x |
A vector representing the variable upon which to estimate the ICC values. |
grpid |
A vector representing the level-2 unit identifier. |
nboot |
The number of bootstrap iterations. Computational demands underlying a 2-level bootstrap are heavy, so the examples use 100; however, the number of interations should generally be 10,000. |
aov.est |
An option to estimate the ICC values using aov. |
Value
Provides ICC(1) estimates for each bootstrap draw.
Author(s)
Paul Bliese pdbliese@gmail.com
References
Bliese, P. D. (2000). Within-group agreement, non-independence, and reliability: Implications for data aggregation and analysis. In K. J. Klein & S. W. Kozlowski (Eds.), Multilevel Theory, Research, and Methods in Organizations (pp. 349-381). San Francisco, CA: Jossey-Bass, Inc.
See Also
Examples
## Not run:
data(bh1996)
ICC.OUT<-boot.icc(bh1996$WBEING,bh1996$GRP,100)
quantile(ICC.OUT,c(.025,.975))
## End(Not run)