multiRDPG_test {multiRDPG} | R Documentation |
Performs test based on Multiple Random Dot Product Graph
Description
multiRDPG_test
calculates the likelihood ratio test for whether a set of graphs
comes from the same disribution.
Usage
multiRDPG_test(A, d, maxiter = 100, tol = 1e-06, B = 1000)
Arguments
A |
List of symmetric A matrices |
d |
Dimension of the latent space |
maxiter |
Maximum number of iterations in the fit of multiRDPG. Default is 100. |
tol |
Tolerance for the step in the objective function in multiRDPG. Default is 1e-6. |
B |
Number of permutation iterations. Default is 1000. |
Value
Returns a list of the following elements:
pvalue | Estimated p-values |
Tval | Value of the test statistic |
Tstar | Vector of the test statistic for each permutation iteration |
nullmodel | Model fit under the null |
altmodel | Modelfit under the alternative |
Author(s)
Agnes Martine Nielsen (agni@dtu.dk)
See Also
Examples
#simulate data
U <- matrix(0, nrow=20, ncol=3)
U[,1] <- 1/sqrt(20)
U[,2] <- rep(c(1,-1), 10)/sqrt(20)
U[,3] <- rep(c(1,1,-1,-1), 5)/sqrt(20)
L<-list(diag(c(11,6,2)),diag(c(15,4,1)))
A <- list()
for(i in 1:2){
P <- U%*%L[[i]]%*%t(U)
A[[i]] <-apply(P,c(1,2),function(x){rbinom(1,1,x)})
A[[i]][lower.tri(A[[i]])]<-t(A[[i]])[lower.tri(A[[i]])]
}
#perform test
multiRDPG_test(A,3,B=100)
[Package multiRDPG version 1.0.1 Index]