rda {mulSEM} | R Documentation |
Redundancy Analysis
Description
It conducts a redundancy analysis using the OpenMx package. Missing data are handled with the full information maximum likelihood method when raw data are available. It provides standard errors on the standardized estimates.
Usage
rda(X_vars, Y_vars, data=NULL, Cov, numObs, extraTries=50, ...)
Arguments
X_vars |
A vector of characters of the X variables. |
Y_vars |
A vector of characters of the Y variables. |
data |
A data frame of raw data. |
Cov |
A covariance or correlation matrix if |
numObs |
A sample size if |
extraTries |
This function calls |
... |
Value
A list of output with class RDA
. It stores the model in
OpenMx objects. The fitted object is in the slot of mx.fit
.
Author(s)
Mike W.-L. Cheung <mikewlcheung@nus.edu.sg>
References
Gu, F., Yung, Y.-F., Cheung, M. W.-L. Joo, B.-K., & Nimon, K. (2023). Statistical inference in redundancy analysis: A direct covariance structure modeling approach. Multivariate Behavioral Research, 58(5, 877-893. https://doi.org/10.1080/00273171.2022.2141675