summary.mtsdi {mtsdi} | R Documentation |
Summary Information
Description
Print summary information on the imputation object
Usage
## S3 method for class 'mtsdi'
summary(object, ...)
Arguments
object |
an object of class |
... |
further options passed to |
Value
The function resturns a list containing
call |
function call |
muhat |
estimated mean vector |
sigmahat |
estimated covariance matrix |
iterations |
number of iterations used |
convergence |
relative difference of covariance determinant reached |
time |
time used in the process |
models |
details on the models used for time filtering |
log |
a logical indicating that data are log transformed |
log.offset |
offset used in the log transformation in order to avoid zeros |
Author(s)
Washington Junger wjunger@ims.uerj.br and Antonio Ponce de Leon ponce@ims.uerj.br
References
Junger, W.L. and Ponce de Leon, A. (2015) Imputation of Missing Data in Time Series for Air Pollutants. Atmospheric Environment, 102, 96-104.
Johnson, R., Wichern, D. (1998) Applied Multivariate Statistical Analysis. Prentice Hall.
Dempster, A., Laird, N., Rubin, D. (1977) Maximum Likelihood from Incomplete Data via the Algorithm EM. Journal of the Royal Statistical Society 39(B)), 1–38.
McLachlan, G. J., Krishnan, T. (1997) The EM algorithm and extensions. John Wiley and Sons.
Box, G., Jenkins, G., Reinsel, G. (1994) Time Series Analysis: Forecasting and Control. 3 ed. Prentice Hall.
Hastie, T. J.; Tibshirani, R. J. (1990) Generalized Additive Models. Chapman and Hall.
See Also
Examples
data(miss)
f <- ~c31+c32+c33+c34+c35
i <- mnimput(f,miss,eps=1e-3,ts=TRUE, method="spline",sp.control=list(df=c(7,7,7,7,7)))
summary(i)