initialize {mtlgmm} | R Documentation |
Initialize the estimators of GMM parameters on each task.
Description
Initialize the estimators of GMM parameters on each task.
Usage
initialize(x, method = c("kmeans", "EM"))
Arguments
x |
design matrices from multiple data sets. Should be a list, of which each component is a |
method |
initialization method. This indicates the method to initialize the estimates of GMM parameters for each data set. Can be either "EM" or "kmeans". Default: "EM". |
Value
A list with the following components.
w |
the estimate of mixture proportion in GMMs for each task. Will be a vector. |
mu1 |
the estimate of Gaussian mean in the first cluster of GMMs for each task. Will be a matrix, where each column represents the estimate for a task. |
mu2 |
the estimate of Gaussian mean in the second cluster of GMMs for each task. Will be a matrix, where each column represents the estimate for a task. |
beta |
the estimate of the discriminant coefficient for each task. Will be a matrix, where each column represents the estimate for a task. |
Sigma |
the estimate of the common covariance matrix for each task. Will be a list, where each component represents the estimate for a task. |
See Also
mtlgmm
, tlgmm
, predict_gmm
, data_generation
, alignment
, alignment_swap
, estimation_error
, misclustering_error
.
Examples
set.seed(0, kind = "L'Ecuyer-CMRG")
## Consider a 5-task multi-task learning problem in the setting "MTL-1"
data_list <- data_generation(K = 5, outlier_K = 1, simulation_no = "MTL-1", h_w = 0.1,
h_mu = 1, n = 50) # generate the data
fit <- mtlgmm(x = data_list$data$x, C1_w = 0.05, C1_mu = 0.2, C1_beta = 0.2,
C2_w = 0.05, C2_mu = 0.2, C2_beta = 0.2, kappa = 1/3, initial_method = "EM",
trim = 0.1, lambda_choice = "fixed", step_size = "lipschitz")
## Initialize the estimators of GMM parameters on each task.
fitted_values_EM <- initialize(data_list$data$x,
"EM") # initilize the estimates by single-task EM algorithm
fitted_values_kmeans <- initialize(data_list$data$x,
"EM") # initilize the estimates by single-task k-means