WAIC {mtarm} | R Documentation |
Watanabe-Akaike or Widely Available Information Criterion (WAIC)
Description
This function computes the Watanabe-Akaike or Widely Available Information criterion (WAIC) for objects of class mtar
.
Usage
WAIC(..., verbose = TRUE, digits = max(3, getOption("digits") - 2))
Arguments
... |
one or several objects of the class mtar. |
verbose |
an (optional) logical switch indicating if should the report of results be printed. As default, |
digits |
an (optional) integer indicating the number of digits to print. As default, |
Value
A data.frame
with the values of the WAIC for each mtar object in the input.
References
Watanabe S. (2010). Asymptotic Equivalence of Bayes Cross Validation and Widely Applicable Information Criterion in Singular Learning Theory. The Journal of Machine Learning Research, 11, 3571–3594.
See Also
Examples
###### Example 1: Returns of the closing prices of three financial indexes
data(returns)
fit1a <- mtar(~ COLCAP + BOVESPA | SP500, row.names=Date, dist="Gaussian",
data=returns, ars=list(p=c(1,1,2)), n.burnin=100, n.sim=3000)
fit1b <- update(fit1a,dist="Slash")
fit1c <- update(fit1a,dist="Student-t")
WAIC(fit1a,fit1b,fit1c)
###### Example 2: Rainfall and two river flows in Colombia
data(riverflows)
fit2a <- mtar(~ Bedon + LaPlata | Rainfall, row.names=Date, dist="Gaussian",
data=riverflows, ars=list(p=c(5,5,5)), n.burnin=100, n.sim=3000)
fit2b <- update(fit2a,dist="Slash")
fit2c <- update(fit2a,dist="Student-t")
WAIC(fit2a,fit2b,fit2c)
[Package mtarm version 0.1.2 Index]