dmtd {mstudentd} | R Documentation |
Density of a Multivariate t
Distribution
Description
Density of the multivariate (p
variables) t
distribution (MTD)
with degrees of freedom nu
, mean vector mu
and
correlation matrix Sigma
.
Usage
dmtd(x, nu, mu, Sigma, tol = 1e-6)
Arguments
x |
length |
nu |
numeric. The degrees of freedom. |
mu |
length |
Sigma |
symmetric, positive-definite square matrix of order |
tol |
tolerance (relative to largest variance) for numerical lack of positive-definiteness in Sigma. |
Details
The density function of a multivariate t
distribution
with p
variables is given by:
\displaystyle{ f(\mathbf{x}|\nu, \boldsymbol{\mu}, \Sigma) = \frac{\Gamma\left( \frac{\nu+p}{2} \right) |\Sigma|^{-1/2}}{\Gamma\left( \frac{\nu}{2} \right) (\nu \pi)^{p/2}} \left( 1 + \frac{1}{\nu} (\mathbf{x}-\boldsymbol{\mu})^T \Sigma^{-1} (\mathbf{x}-\boldsymbol{\mu}) \right)^{-\frac{\nu+p}{2}} }
When p=1
(univariate case) it becomes:
\displaystyle{ f(x|\nu, \mu, \sigma^2) = \frac{\Gamma\left( \frac{\nu+1}{2} \right)}{\Gamma\left( \frac{\nu}{2} \right) \sqrt{\nu \pi} \sigma} \left(1 + \frac{(x-\mu)^2}{\nu \sigma^2}\right)^{-\frac{\nu+1}{2}} }
Value
The value of the density.
Author(s)
Pierre Santagostini, Nizar Bouhlel
References
S. Kotz and Saralees Nadarajah (2004), Multivariate t
Distributions and Their Applications, Cambridge University Press.
Examples
nu <- 1
mu <- c(0, 1, 4)
Sigma <- matrix(c(0.8, 0.3, 0.2, 0.3, 0.2, 0.1, 0.2, 0.1, 0.2), nrow = 3)
dmtd(c(0, 1, 4), nu, mu, Sigma)
dmtd(c(1, 2, 3), nu, mu, Sigma)
# Univariate
dmtd(1, 3, 0, 1)
dt(1, 3)