pcbic.stepwise {msos} | R Documentation |
Choosing a good pattern
Description
Uses the stepwise procedure described in Section 13.1.4 to find a pattern for a set of observed eigenvalues with good BIC value.
Usage
pcbic.stepwise(eigenvals, n)
Arguments
eigenvals |
The |
n |
The degrees of freedom in the covariance matrix. |
Value
A list with the following components:
- Patterns
A list of patterns, one for each value of length
K
.- BICs
A vector of the BIC's for the above patterns.
- BestBIC
The best (smallest) value among the BIC's in BICs.
- BestPattern
The pattern with the best BIC.
- lambdaHat
A
Q
-vector containing the MLE's for the eigenvalues for the pattern with the best BIC.
See Also
pcbic
, pcbic.unite
,
and pcbic.subpatterns
.
Examples
# Build cars1
require("mclust")
mcars <- Mclust(cars)
cars1 <- cars[mcars$classification == 1, ]
xcars <- scale(cars1)
eg <- eigen(var(xcars))
pcbic.stepwise(eg$values, 95)
[Package msos version 1.2.0 Index]