bsm.fit {msos} | R Documentation |
Helper function to determine \beta
estimates for MLE regression with
patterning.
Description
Generates \beta
estimates for MLE using a conditioning approach with
patterning support.
Usage
bsm.fit(x, y, z, pattern)
Arguments
x |
An |
y |
The |
z |
A |
pattern |
An optional |
Value
A list with the following components:
- Beta
The least-squares estimate of
\beta
.- SE
The
(P+F)\times L
matrix with theij
th element being the standard error of\hat{\beta}_ij
.- T
The
(P+F)\times L
matrix with theij
th element being the t-statistic based on\hat{\beta}_ij
.- Covbeta
The estimated covariance matrix of the
\hat{\beta}_ij
's.- df
A
p
-dimensional vector of the degrees of freedom for thet
-statistics, where thej
th component contains the degrees of freedom for thej
th column of\hat{\beta}
.- Sigmaz
The
(Q - F) \times (Q - F)
matrix\hat{\Sigma}_z
.- Cx
The
Q \times Q
residual sum of squares and crossproducts matrix.
See Also
bothsidesmodel.mle
and bsm.simple
Examples
# NA