| bsm.fit {msos} | R Documentation |
Helper function to determine \beta estimates for MLE regression with
patterning.
Description
Generates \beta estimates for MLE using a conditioning approach with
patterning support.
Usage
bsm.fit(x, y, z, pattern)
Arguments
x |
An |
y |
The |
z |
A |
pattern |
An optional |
Value
A list with the following components:
- Beta
The least-squares estimate of
\beta.- SE
The
(P+F)\times Lmatrix with theijth element being the standard error of\hat{\beta}_ij.- T
The
(P+F)\times Lmatrix with theijth element being the t-statistic based on\hat{\beta}_ij.- Covbeta
The estimated covariance matrix of the
\hat{\beta}_ij's.- df
A
p-dimensional vector of the degrees of freedom for thet-statistics, where thejth component contains the degrees of freedom for thejth column of\hat{\beta}.- Sigmaz
The
(Q - F) \times (Q - F)matrix\hat{\Sigma}_z.- Cx
The
Q \times Qresidual sum of squares and crossproducts matrix.
See Also
bothsidesmodel.mle and bsm.simple
Examples
# NA