| bothsidesmodel.mle {msos} | R Documentation |
Calculate the maximum likelihood estimates
Description
This function fits the model using maximum likelihood. It takes an optional
pattern matrix P as in (6.51), which specifies which \beta _{ij}'s
are zero.
Usage
bothsidesmodel.mle(x, y, z = diag(qq), pattern = matrix(1, nrow = p, ncol = l))
Arguments
x |
An |
y |
The |
z |
A |
pattern |
An optional |
Value
A list with the following components:
- Beta
The least-squares estimate of
\beta.- SE
The
P \times Lmatrix with theijth element being the standard error of\hat{\beta}_{ij}.- T
The
P \times Lmatrix with theijth element being thet-statistic based on\hat{\beta}_{ij}.- Covbeta
The estimated covariance matrix of the
\hat{\beta}_{ij}'s.- df
A
p-dimensional vector of the degrees of freedom for thet-statistics, where thejth component contains the degrees of freedom for thejth column of\hat{\beta}.- Sigmaz
The
Q \times Qmatrix\hat{\Sigma}_z.- Cx
The
Q \times Qresidual sum of squares and crossproducts matrix.- ResidSS
The dimension of the model, counting the nonzero
\beta _{ij}'s and components of\Sigma _z.- Deviance
Mallow's
C_pStatistic.- Dim
The dimension of the model, counting the nonzero
\beta _{ij}'s and components of\Sigma_z- AICc
The corrected AIC criterion from (9.87) and (aic19)
- BIC
The BIC criterion from (9.56).
See Also
bothsidesmodel.chisquare, bothsidesmodel.df,
bothsidesmodel.hotelling, bothsidesmodel.lrt,
and bothsidesmodel.
Examples
data(mouths)
x <- cbind(1, mouths[, 5])
y <- mouths[, 1:4]
z <- cbind(1, c(-3, -1, 1, 3), c(-1, 1, 1, -1), c(-1, 3, -3, 1))
bothsidesmodel.mle(x, y, z, cbind(c(1, 1), 1, 0, 0))