| bothsidesmodel.lrt {msos} | R Documentation |
Test subsets of \beta are zero.
Description
Tests the null hypothesis that an arbitrary subset of the \beta _{ij}'s
is zero, using the likelihood ratio test as in Section 9.4. The null and
alternative are specified by pattern matrices P_0 and P_A,
respectively. If the P_A is omitted, then the alternative will be
taken to be the unrestricted model.
Usage
bothsidesmodel.lrt(
x,
y,
z,
pattern0,
patternA = matrix(1, nrow = ncol(x), ncol = ncol(z))
)
Arguments
x |
An |
y |
The |
z |
A |
pattern0 |
An |
patternA |
An optional |
Value
A list with the following components:
- chisq
The likelihood ratio statistic in (9.44).
- df
The degrees of freedom in the test.
- pvalue
The
p-value for the test.
See Also
bothsidesmodel.chisquare, bothsidesmodel.df,
bothsidesmodel.hotelling, bothsidesmodel,
and bothsidesmodel.mle.
Examples
# Load data
data(caffeine)
# Matrices
x <- cbind(
rep(1, 28),
c(rep(-1, 9), rep(0, 10), rep(1, 9)),
c(rep(1, 9), rep(-1.8, 10), rep(1, 9))
)
y <- caffeine[, -1]
z <- cbind(c(1, 1), c(1, -1))
pattern <- cbind(c(rep(1, 3)), 1)
# Fit model
bsm <- bothsidesmodel.lrt(x, y, z, pattern)