msir.permutation.test {msir} | R Documentation |
Permutation test for dimensionality
Description
Approximates marginal dimension test significance levels by sampling from the permutation distribution.
Usage
msir.permutation.test(object, npermute = 99, numdir = object$numdir, verbose = TRUE)
Arguments
object |
a |
npermute |
number of permutations to compute. |
numdir |
maximum value of the dimension to test. |
verbose |
if |
Details
The function approximates significance levels of the marginal dimension tests based on a permutation test.
Value
The function returns a list with components:
summary |
a table containing the hypotheses, the test statistics, the permutation p-values. |
npermute |
the number of permutations used. |
Furthermore, it also assigns the above information to the corresponding 'msir'
object.
Author(s)
Luca Scrucca luca.scrucca@unipg.it
References
Scrucca, L. (2011) Model-based SIR for dimension reduction. Computational Statistics & Data Analysis, 55(11), 3010-3026.
See Also
Function dr()
in package dr.
Examples
## Not run:
# 1-dimensional simple regression
n <- 200
p <- 5
b <- as.matrix(c(1,-1,rep(0,p-2)))
x <- matrix(rnorm(n*p), nrow = n, ncol = p)
y <- exp(0.5 * x%*%b) + 0.1*rnorm(n)
MSIR <- msir(x, y)
msir.permutation.test(MSIR)
summary(MSIR)
## End(Not run)