Multi-Step Adaptive Estimation Methods for Sparse Regressions


[Up] [Top]

Documentation for package ‘msaenet’ version 3.1.2

Help Pages

aenet Adaptive Elastic-Net
amnet Adaptive MCP-Net
asnet Adaptive SCAD-Net
coef.msaenet Extract Model Coefficients
msaenet Multi-Step Adaptive Elastic-Net
msaenet.fn Get the Number of False Negative Selections
msaenet.fp Get the Number of False Positive Selections
msaenet.mae Mean Absolute Error (MAE)
msaenet.mse Mean Squared Error (MSE)
msaenet.nzv Get Indices of Non-Zero Variables
msaenet.nzv.all Get Indices of Non-Zero Variables in All Steps
msaenet.rmse Root Mean Squared Error (RMSE)
msaenet.rmsle Root Mean Squared Logarithmic Error (RMSLE)
msaenet.sim.binomial Generate Simulation Data for Benchmarking Sparse Regressions (Binomial Response)
msaenet.sim.cox Generate Simulation Data for Benchmarking Sparse Regressions (Cox Model)
msaenet.sim.gaussian Generate Simulation Data for Benchmarking Sparse Regressions (Gaussian Response)
msaenet.sim.poisson Generate Simulation Data for Benchmarking Sparse Regressions (Poisson Response)
msaenet.tp Get the Number of True Positive Selections
msamnet Multi-Step Adaptive MCP-Net
msasnet Multi-Step Adaptive SCAD-Net
plot.msaenet Plot msaenet Model Objects
predict.msaenet Make Predictions from an msaenet Model
print.msaenet Print msaenet Model Information