mHBNormal {msaeHB} | R Documentation |
Multivariate Small Area Estimation using Hierarchical Bayesian under Normal Distribution
Description
This function implements small area estimation using hierarchical bayesian to variable of interest that assumed to be a multivariate normal distribution.
Usage
mHBNormal(
formula,
vardir,
iter.update = 3,
iter.mcmc = 10000,
thin = 2,
burn.in = 2000,
data
)
Arguments
formula |
an object of class list of formula, describe the model to be fitted |
vardir |
vector containing name of sampling variances of direct estimators in the following order : |
iter.update |
number of updates with default |
iter.mcmc |
number of total iterations per chain with default |
thin |
thinning rate, must be a positive integer with default |
burn.in |
number of iterations to discard at the beginning with default |
data |
dataframe containing the variables named in |
Value
The function returns a list with the following objects:
- Est
A vector with the values of Small Area mean Estimates using Hierarchical bayesian method
- coefficient
A dataframe with the estimated model coefficient
- plot
Trace, Density, Autocorrelation Function Plot of MCMC samples
Examples
## Load dataset
data(datasaeNorm)
## Using parameter 'data'
Fo <- list(f1=Y1~X1+X2,
f2=Y2~X1+X2)
vardir <- c("v1", "v2", "v12")
m1 <- mHBNormal(formula=Fo, vardir=vardir,
iter.update = 1, iter.mcmc = 1000,
thin = 2, burn.in = 200, data=datasaeNorm)