| mHBNormal {msaeHB} | R Documentation | 
Multivariate Small Area Estimation using Hierarchical Bayesian under Normal Distribution
Description
This function implements small area estimation using hierarchical bayesian to variable of interest that assumed to be a multivariate normal distribution.
Usage
mHBNormal(
  formula,
  vardir,
  iter.update = 3,
  iter.mcmc = 10000,
  thin = 2,
  burn.in = 2000,
  data
)
Arguments
| formula | an object of class list of formula, describe the model to be fitted | 
| vardir | vector containing name of sampling variances of direct estimators  in the following order :  | 
| iter.update | number of updates with default  | 
| iter.mcmc | number of total iterations per chain with default  | 
| thin | thinning rate, must be a positive integer with default  | 
| burn.in | number of iterations to discard at the beginning with default  | 
| data | dataframe containing the variables named in  | 
Value
The function returns a list with the following objects:
- Est
- A vector with the values of Small Area mean Estimates using Hierarchical bayesian method 
- coefficient
- A dataframe with the estimated model coefficient 
- plot
- Trace, Density, Autocorrelation Function Plot of MCMC samples 
Examples
  ## Load dataset
  data(datasaeNorm)
  ## Using parameter 'data'
  Fo <- list(f1=Y1~X1+X2,
             f2=Y2~X1+X2)
  vardir <- c("v1", "v2", "v12")
  m1 <- mHBNormal(formula=Fo, vardir=vardir,
  iter.update = 1, iter.mcmc = 1000,
  thin = 2, burn.in = 200, data=datasaeNorm)