| datasaeT {msaeHB} | R Documentation |
Sample Data for Small Area Estimation using Hierarchical Bayesian Method under Multivariate T distribution
Description
Dataset to simulate Small Area Estimation using Hierarchical Bayesian Method under Multivariate T distribution
This data is generated by these following steps:
Generate sampling error
e, random effectu, and auxiliary variablesX1 X2.For sampling error
e, we sete_{d}is multivariate T distributed where the vector of noncentrality parameters is zero, scale matrixV_{ed} = (\sigma_{dij})_{i,j=1,2,3}, with\sigma_{ii}~InvGamma(a, b)and\rho_{e}= 0.5, and degree of freedomdf~InvGamma(a, b).For random effect
u, we setu~N_{3}(0, V_{u}).For auxiliary variables
X1 and X2, we setX1~UNIF(1,2)andX2~UNIF(1, 10).
Calculate direct estimation
Y1 Y2 and Y3, whereY_{i}=X * \beta + u_{i} + e_{i}. We take\beta_{1} = 1and\beta_{2} = 1.
Auxiliary variables X1 X2, direct estimation Y1 Y2 Y3, and sampling variance-covariance v1 v2 v3 v12 v13 v23 are combined into a dataframe called datasaeT
Usage
datasaeT
Format
A data frame with 30 rows and 11 variables:
- X1
Auxiliary variable of X1
- X2
Auxiliary variable of X2
- Y1
Direct Estimation of Y1
- Y2
Direct Estimation of Y2
- Y3
Direct Estimation of Y3
- v1
Sampling Variance of Y1
- v12
Sampling Covariance of Y1 and Y2
- v13
Sampling Covariance of Y1 and Y3
- v2
Sampling Variance of Y2
- v23
Sampling Covariance of Y2 and Y3
- v3
Sampling Variance of Y3