datasaeNorm {msaeHB} | R Documentation |
Sample Data for Small Area Estimation using Hierarchical Bayesian Method under Multivariate Normal distribution
Description
Dataset to simulate Small Area Estimation using Hierarchical Bayesian Method under Multivariate Normal distribution
This data is generated by these following steps:
Generate sampling error
e
, random effectu
, and auxiliary variablesX1 X2
.For sampling error
e
, we sete_{d}
~N_{3}(0, V_{ed})
, whereV_{ed} = (\sigma_{dij})_{i,j=1,2,3}
, with\sigma_{ii}
~InvGamma(a, b)
and\rho_{e}
= 0.5.For random effect
u
, we setu
~N_{3}(0, V_{u})
.For auxiliary variables
X1 and X2
, we setX1
~UNIF(1,2)
andX2
~UNIF(1, 10)
.
Calculate direct estimation
Y1 Y2 and Y3
, whereY_{i}
=X * \beta + u_{i} + e_{i}
. We take\beta_{1} = 1
and\beta_{2} = 1
.
Auxiliary variables X1 X2
, direct estimation Y1 Y2 Y3
, and sampling variance-covariance v1 v2 v3 v12 v13 v23
are combined into a dataframe called datasaeNorm
Usage
datasaeNorm
Format
A data frame with 30 rows and 11 variables:
- X1
Auxiliary variable of X1
- X2
Auxiliary variable of X2
- Y1
Direct Estimation of Y1
- Y2
Direct Estimation of Y2
- Y3
Direct Estimation of Y3
- v1
Sampling Variance of Y1
- v12
Sampling Covariance of Y1 and Y2
- v13
Sampling Covariance of Y1 and Y3
- v2
Sampling Variance of Y2
- v23
Sampling Covariance of Y2 and Y3
- v3
Sampling Variance of Y3