eblupMFH3 {msae} | R Documentation |
EBLUPs based on a Heteroscedastic Autoregressive Multivariate Fay Herriot (Model 3)
Description
This function gives the EBLUP and MSE based on a heteroscedastic autoregressive multivariate Fay-Herriot model (model 3).
Usage
eblupMFH3(formula, vardir, MAXITER = 100, PRECISION = 1e-04, data)
Arguments
formula |
an object of class list of formula, describe the model to be fitted |
vardir |
if data is available, it is vector containing name of sampling variances of direct estimators. if not, it is data frame of sampling variances of direct estimators. The order is : |
MAXITER |
maximum number of iterations allowed in the Fisher-scoring algorithm, Default: |
PRECISION |
convergence tolerance limit for the Fisher-scoring algorithm, Default: |
data |
dataframe containing the variables named in |
Value
The function returns a list with the following objects:
- eblup
a dataframe with the values of the EBLUP estimators
- MSE
a dataframe with the estimated mean squared errors of the EBLUPs for the small domains
- randomEffect
a dataframe with the values of the random effect estimators
- Rmatrix
a block diagonal matrix composed of sampling errors
- fit
a list containing the following objects:
method : type of fitting method, named "REML"
convergence : a logical value of convergence of Fisher Scoring algorithm
iterations : number of iterations performed by Fisher-Scoring algorithm
estcoef : a dataframe with the estimated model coefficient in the first column, their standard error in the second column, the t statistics in the third column, and the p-values of the significance of each coefficient in the last column
refvar : a dataframe with the estimated random effect variance
refvarTest : homogeneity of random effect variance test based on Model 3
rho : a dataframe with the estimated rho of random effect variance and their rho parameter test based on Model 2
informationFisher : a matrix of information Fisher of Fisher-Scoring algorithm
Examples
## Load dataset
data(datasae3)
# Compute EBLUP and MSE of Y1 Y2 and Y3 based on Model 3
# using auxiliary variables X1 and X2 for each dependent variable
## Using parameter 'data'
Fo <- list(f1=Y1~X1+X2,
f2=Y2~X1+X2,
f3=Y3~X1+X2)
vardir <- c("v1", "v2", "v3", "v12", "v13", "v23")
m3 <- eblupMFH3(Fo, vardir, data=datasae3)
## Without parameter 'data'
Fo <- list(f1=datasae3$Y1~datasae3$X1+datasae3$X2,
f2=datasae3$Y2~datasae3$X1+datasae3$X2,
f3=datasae3$Y3~datasae3$X1+datasae3$X2)
vardir <- datasae3[,c("v1", "v2", "v3", "v12", "v13", "v23")]
m3 <- eblupMFH3(Fo, vardir)
m3$eblup # see the EBLUP estimators
m3$MSE # see MSE of EBLUP estimators