datasae3 {msae} | R Documentation |
Data generated based on Heteroscedastic Autoregressive Multivariate Fay Herriot Model (Model 3)
Description
This data is generated based on heteroscedastic autoregressive multivariate Fay-Herriot model (model 3) by following these steps:
Generate sampling error
e
, random effectu
, and auxiliary variablesX1 X2
.For sampling error
e
, we sete
~N_{3}(0, V_{e})
, whereV_{e} = (\sigma_{ij})_{i,j=1,2,3}
, with\sigma_{11}
= 0.1 ,\sigma_{22}
= 0.2 ,\sigma_{33}
= 0.3 , and\rho_{e}
= 0.5.For random effect
u
, we setu
~N_{3}(0, V_{u})
, where\sigma_{u11}
= 0.2 ,\sigma_{u22}
= 0.4 ,\sigma_{u33}
= 1.2, and\rho_{u}
= 0.8.For auxiliary variables
X1 and X2
, we setX1
~N(5, 0.1)
andX2
~N(10, 0.2)
.
Calculate direct estimation
Y1 Y2 and Y3
, whereY_{i}
=X * \beta + u_{i} + e_{i}
. We take\beta_{1} = 5
and\beta_{2} = 10
.
Auxiliary variables X1 X2
, direct estimation Y1 Y2 Y3
, and sampling variance-covariance v1 v2 v3 v12 v13 v23
are combined into a dataframe called datasae3.
Usage
datasae3
Format
A data frame with 50 rows and 11 variables:
- X1
Auxiliary variable of X1
- X2
Auxiliary variable of X2
- Y1
Direct Estimation of Y1
- Y2
Direct Estimation of Y2
- Y3
Direct Estimation of Y3
- v1
Sampling Variance of Y1
- v12
Sampling Covariance of Y1 and Y2
- v13
Sampling Covariance of Y1 and Y3
- v2
Sampling Variance of Y2
- v23
Sampling Covariance of Y2 and Y3
- v3
Sampling Variance of Y3
Reference
Benavent, Roberto & Morales, Domingo. (2015). Multivariate Fay-Herriot models for small area estimation. Computational Statistics & Data Analysis. 100. 372-390. DOI: 10.1016/j.csda.2015.07.013.