| datasae1 {msae} | R Documentation |
Data generated based on Multivariate Fay Herriot Model (Model 1)
Description
This data is generated based on multivariate Fay-Herriot model (model 1) by these following steps:
Generate sampling error
e, random effectu, and auxiliary variablesX1 X2.For sampling error
e, we sete_{d}~N_{3}(0, V_{ed}), whereV_{ed} = (\sigma_{dij})_{i,j=1,2,3}, with\sigma_{11}~InvGamma(11, 1),\sigma_{22}~InvGamma(11, 2),\sigma_{33}~InvGamma(11, 3), and\rho_{e}= 0.5.For random effect
u, we setu~N_{3}(0, V_{u}), where\sigma_{u11}= 0.2 ,\sigma_{u22}= 0.4 , and\sigma_{u33}= 1.2.For auxiliary variables
X1 and X2, we setX1~N(5, 0.1)andX2~N(10, 0.2).
Calculate direct estimation
Y1 Y2 and Y3, whereY_{i}=X * \beta + u_{i} + e_{i}. We take\beta_{1} = 5and\beta_{2} = 10.
Auxiliary variables X1 X2, direct estimation Y1 Y2 Y3, and sampling variance-covariance v1 v2 v3 v12 v13 v23 are combined into a dataframe called datasae1.
Usage
datasae1
Format
A data frame with 50 rows and 11 variables:
- X1
Auxiliary variable of X1
- X2
Auxiliary variable of X2
- Y1
Direct Estimation of Y1
- Y2
Direct Estimation of Y2
- Y3
Direct Estimation of Y3
- v1
Sampling Variance of Y1
- v12
Sampling Covariance of Y1 and Y2
- v13
Sampling Covariance of Y1 and Y3
- v2
Sampling Variance of Y2
- v23
Sampling Covariance of Y2 and Y3
- v3
Sampling Variance of Y3
Reference
Benavent, Roberto & Morales, Domingo. (2015). Multivariate Fay-Herriot models for small area estimation. Computational Statistics & Data Analysis. 100. 372-390. DOI: 10.1016/j.csda.2015.07.013.