mrf_elm_forecast {mrf} | R Documentation |
Forecast with Extreme Learning Machines
Description
This function creates a one step forecast using a multi layer perceptron with one hidden Layer. The number of input is the sum of all coefficients chosen with the parameter CoefficientCombination. The CoefficientCombination parameter controls the number of coefficients chosen for each wavelet and smooth part level individually.
Usage
mrf_elm_forecast(UnivariateData, Horizon, Aggregation, Threshold="hard",
Lambda=0.05)
Arguments
UnivariateData |
[1:n] Numerical vector with n values. |
Horizon |
Number indicating horizon for forecast from 1 to horizon. |
Aggregation |
[1:Scales] Numerical vector carrying numbers whose index is associated with the wavelet level. The numbers indicate the number of time in points used for aggregation from the original time series. |
Threshold |
Character indicating if Thresholding is done on the wavelet decomposition or not. Default: Threshold="hard". Possible entries: Threshold="hard" for hard thresholding. Threshold="soft" for soft thresholding. Any other input indicates no thresholding. |
Lambda |
Numeric value indicating the threshold for computing a hard or soft threshold on the wavelet decomposition. |
Value
forecast |
Numerical value with one step forecast |
Author(s)
Quirin Stier
References
Aussem, A., Campbell, J., and Murtagh, F. Waveletbased Feature Extraction and Decomposition Strategies for Financial Forecasting. International Journal of Computational Intelligence in Finance, 6,5-12, 1998.
Renaud, O., Starck, J.-L., and Murtagh, F. Prediction based on a Multiscale De- composition. International Journal of Wavelets, Multiresolution and Information Processing, 1(2):217-232. doi:10.1142/S0219691303000153, 2003.
Murtagh, F., Starck, J.-L., and Renaud, O. On Neuro-Wavelet Modeling. Decision Support Systems, 37(4):475-484. doi:10.1016/S0167-9236(03)00092-7, 2004.
Renaud, O., Starck, J.-L., and Murtagh, F. Wavelet-based combined Signal Filter- ing and Prediction. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 35(6):1241-1251. doi:10.1109/TSMCB.2005.850182, 2005.
Examples
data(AirPassengers)
len_data = length(as.vector(array(AirPassengers)))
UnivariateData = as.vector(AirPassengers)[1:(len_data-1)]
Aggregation = c(2,4)
if(requireNamespace('nnfor', quietly = TRUE)){
forecast = mrf_elm_forecast(UnivariateData, Horizon=1, Aggregation)
true_value = array(AirPassengers)[len_data]
error = true_value - forecast
}