mrct.sparse.plot {mrct} | R Documentation |
Plot function for result from mrct.sparse()
Description
A function for descriptive plots for an object resulting from a call to mrct.sparse()
.
Usage
mrct.sparse.plot(
x = seq(0, 1, length.out = dim(mrct.sparse.object[[2]])[2]),
mrct.sparse.object
)
Arguments
x |
Gridpoints on which the smoothed data is to be plotted on. Default is |
mrct.sparse.object |
A result from a call to |
Value
Descriptive plots.
aMHD.plot |
Alpha-Mahalanobis distances, corresponding cutoff values and coloring according to estimated outliers (grey regular, black irregular). |
aMHD.plot.w |
Same as |
data.plot |
Plot of the smoothed curves, colors corresponding to estimated outliers (gery regular, black irregular). Per default, the x-axis is plotted over
an equidistant grid of the interval |
Examples
# Similar to example in mrct.sparse() helpfile
# Fix seed for reproducibility
set.seed(123)
# Sample outlying indices
cont.ind <- sample(1:50,size=10)
# Generate 50 sparse curves on the interval [0,1] at 10 timepoints with 20% outliers
y <- mrct.rgauss(x.grid=seq(0,1,length.out=10), N=50, model=1,
outliers=cont.ind, method="linear")
# Visualize curves (regular curves grey, outliers black)
colormap <- rep("grey",50); colormap[cont.ind] <- "black"
matplot(x = seq(0,1,length.out=10), y = t(y), type="l", lty="solid",
col=colormap, xlab="t",ylab="")
# Run sparse MRCT
sparse.mrct.y <- mrct.sparse(data = y, nbasis = 10, h = 0.75, new.p = 50,
alpha = 0.1, initializations = 10, criterion = "sum" )
# Visualize alpha-Mahalanobis distances and smoothed curves
# Colorinformation according to estimated outliers (grey regular, black irregular)
mrct.sparse.plot(mrct.sparse.object = sparse.mrct.y)
[Package mrct version 0.0.1.0 Index]