mvmr_ivw_rjags {mrbayes} | R Documentation |
Bayesian multivariate inverse variance weighted model with a choice of prior distributions fitted using JAGS.
Description
Bayesian multivariate inverse variance weighted model with a choice of prior distributions fitted using JAGS.
Usage
mvmr_ivw_rjags(
object,
prior = "default",
betaprior = "",
n.chains = 3,
n.burn = 1000,
n.iter = 5000,
seed = NULL,
...
)
Arguments
object |
A data object of class |
prior |
A character string for selecting the prior distributions;
|
betaprior |
A character string in JAGS syntax to allow a user defined prior for the causal effect. |
n.chains |
Numeric indicating the number of chains used in the MCMC estimation, the default is |
n.burn |
Numeric indicating the burn-in period of the Bayesian MCMC estimation. The default is |
n.iter |
Numeric indicating the number of iterations in the Bayesian MCMC estimation. The default is |
seed |
Numeric indicating the random number seed. The default is the rjags default. |
... |
Additional arguments passed through to |
Value
An object of class mvivwjags
containing the following components:
- CausalEffect
The mean of the simulated causal effects
- StandardError
Standard deviation of the simulated causal effects
- CredibleInterval
The credible interval for the causal effect, which indicates the lower(2.5%), median (50%) and upper intervals (97.5%)
- samples
Output of the Bayesian MCMC samples with the different chains
- Priors
The specified priors
References
Burgess, S., Butterworth, A., Thompson S.G. Mendelian randomization analysis with multiple genetic variants using summarized data. Genetic Epidemiology, 2013, 37, 7, 658-665 doi: 10.1002/gepi.21758.
Examples
if (requireNamespace("rjags", quietly = TRUE)) {
dat <- mvmr_format(rsid = dodata$rsid,
xbeta = cbind(dodata$ldlcbeta,dodata$hdlcbeta,dodata$tgbeta),
ybeta = dodata$chdbeta,
xse = cbind(dodata$ldlcse,dodata$hdlcse,dodata$tgse),
yse = dodata$chdse)
fit <- mvmr_ivw_rjags(dat)
print(fit)
summary(fit)
plot(fit$samples)
# 90% credible interval
fitdf <- do.call(rbind.data.frame, fit$samples)
cri90 <- sapply(fitdf, quantile, probs = c(0.05, 0.95))
print(cri90)
}