mvmr_egger_stan {mrbayes} | R Documentation |
Bayesian implementation of the MVMR-Egger model with choice of prior distributions fitted using RStan.
Description
Bayesian implementation of the MVMR-Egger model with choice of prior distributions fitted using RStan.
Usage
mvmr_egger_stan(
data,
prior = 1,
n.chains = 3,
n.burn = 1000,
n.iter = 5000,
seed = 12345,
rho = 0.5,
orientate = 1,
...
)
Arguments
data |
A data of class |
prior |
An integer for selecting the prior distributions;
|
n.chains |
Numeric indicating the number of chains used in the HMC estimation in rstan, the default is |
n.burn |
Numeric indicating the burn-in period of the Bayesian HMC estimation. The default is |
n.iter |
Numeric indicating the number of iterations in the Bayesian HMC estimation. The default is |
seed |
Numeric indicating the random number seed. The default is |
rho |
Numeric indicating the correlation coefficient input into the joint prior distribution. The default is |
orientate |
Numeric value to indicate the oriented exposure. |
... |
Additional arguments passed through to |
Value
An object of class stanfit
.
References
Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. International Journal of Epidemiology, 2015, 44, 2, 512-525. doi: 10.1093/ije/dyv080.
Stan Development Team (2020). "RStan: the R interface to Stan." R package version 2.19.3, https://mc-stan.org/.
Examples
if (requireNamespace("rstan", quietly = TRUE)) {
# Note we recommend setting n.burn and n.iter to larger values
dat <- mvmr_format(rsid = dodata$rsid,
xbeta = cbind(dodata$ldlcbeta,dodata$hdlcbeta,dodata$tgbeta),
ybeta = dodata$chdbeta,
xse = cbind(dodata$ldlcse,dodata$hdlcse,dodata$tgse),
yse = dodata$chdse)
mvegger_fit <- mvmr_egger_stan(dat, n.burn = 500, n.iter = 1000)
print(mvegger_fit)
}