| predict.mpr {mpr} | R Documentation | 
Predict method for Multi-Parameter Regression (MPR) Fits
Description
Survival predictions based on mpr objects.
Usage
## S3 method for class 'mpr'
predict(object, newdata, type = c("survivor", "hazard", "percentile"),
        tvec, prob = 0.5, ...)
Arguments
| object | an object of class “ | 
| newdata | 
 | 
| type | type of prediction which may be a survivor function, hazard function or percentile value. | 
| tvec | vector of times at which the predicted survivor or hazard function will be evaluated. Only required
if  | 
| prob | numeric value between 0 and 1 (i.e., probability) indicating the percentile to be predicted. By
default  | 
| ... | further arguments passed to or from other methods. | 
Value
A matrix of predictions whose rows correspond to the rows of newdata. When type
is "survivor" or "hazard", this matrix of predictions has columns
corresponding to tvec. However, when type is "percentile", the matrix only
has one column.
Author(s)
Kevin Burke.
See Also
Examples
library(survival)
# Veterans' administration lung cancer data
veteran <- survival::veteran
head(veteran)
# Weibull MPR treatment model
mod1 <- mpr(Surv(time, status) ~ list(~ trt, ~ trt), data=veteran,
            family="Weibull")
# predicted survivor function evaluated at four times
predict(mod1, newdata=data.frame(trt=c(1,2)), type="survivor",
        tvec=c(25, 50, 100, 150))
# predicted percentiles
predict(mod1, newdata=data.frame(trt=c(1,2)), type="percentile", prob=0.5)
predict(mod1, newdata=data.frame(trt=c(1,2)), type="percentile", prob=0.1)
# comparing predicted survivor functions to Kaplan-Meier curves
KM <- survfit(Surv(time, status) ~ trt, data=veteran)
plot(KM, col=1:2)
tvec <- seq(0, max(KM$time), length=100)
Stpred <- predict(mod1, newdata=data.frame(trt=c(1,2)), type="survivor",
                  tvec=tvec)
lines(tvec, Stpred[1,])
lines(tvec, Stpred[2,], col=2)