| mpp_perm {mppR} | R Documentation | 
QTL significance threshold by permutation
Description
Determination of an empirical null distribution of the QTL significance threshold for a MPP QTL analysis using permutation test (Churchill and Doerge, 1994).
Usage
mpp_perm(
  mppData,
  trait = 1,
  Q.eff = "cr",
  N = 1000,
  q.val = 0.95,
  verbose = TRUE,
  n.cores = 1
)
Arguments
mppData | 
 An object of class   | 
trait | 
 
  | 
Q.eff | 
 
  | 
N | 
 Number of permutations. Default = 1000.  | 
q.val | 
 Single   | 
verbose | 
 
  | 
n.cores | 
 
  | 
Details
Performs N permutations of the trait data and
computes each time a genome-wide QTL profile. For every run, it stores the
highest -log10(p-val). These values can be used to build a null distribution
for the QTL significance threshold. Quantile values can be determined from
the previous distribution. For more details about the different possible
models and their assumptions see mpp_SIM documentation.
Value
Return:
List with the following object:
max.pval | 
 Vector of the highest genome-wide -log10(p-values).  | 
q.val | 
 Quantile values from the QTL significance threshold null distribution.  | 
seed | 
 
  | 
Author(s)
Vincent Garin
References
Churchill, G. A., & Doerge, R. W. (1994). Empirical threshold values for quantitative trait mapping. Genetics, 138(3), 963-971.
See Also
Examples
data(mppData)
Perm <- mpp_perm(mppData = mppData, Q.eff = "cr", N = 5)