mpp_CIM {mppR} | R Documentation |
MPP Composite Interval Mapping
Description
Compute QTL models along the genome using cofactors representing other genetic positions for control.
Usage
mpp_CIM(
mppData,
trait = 1,
Q.eff = "cr",
cofactors = NULL,
window = 20,
plot.gen.eff = FALSE,
n.cores = 1
)
Arguments
mppData |
An object of class |
trait |
|
Q.eff |
|
cofactors |
Object of class |
window |
|
plot.gen.eff |
|
n.cores |
|
Details
For more details about the different models, see documentation of the
function mpp_SIM
. The function returns a -log10(p-value) QTL
profile.
Value
Return:
CIM |
|
Author(s)
Vincent Garin
See Also
Examples
# Cross-specific effect model
#############################
data(mppData)
SIM <- mpp_SIM(mppData = mppData, Q.eff = "cr")
cofactors <- QTL_select(Qprof = SIM, threshold = 3, window = 20)
CIM <- mpp_CIM(mppData = mppData, Q.eff = "cr", cofactors = cofactors,
window = 20, plot.gen.eff = TRUE)
plot(x = CIM)
plot(x = CIM, gen.eff = TRUE, mppData = mppData, Q.eff = "cr")
# Bi-allelic model
##################
cofactors <- mppData$map[c(15, 63), 1]
CIM <- mpp_CIM(mppData = mppData, Q.eff = "biall", cofactors = cofactors,
window = 20)
plot(x = CIM, type = "h")