mppGE_CIM {mppR} | R Documentation |
MPP GxE Composite Interval Mapping
Description
Computes multi-QTL models with cofactors along the genome using an approximate
mixed model computation. An initial variance covariance (VCOV) structure is
calculated using function from the nlme
package. Then, this information
is used to estimate the QTL global and within parental effect significance using a
Wald test.
Usage
mppGE_CIM(
mppData,
trait,
VCOV = "UN",
VCOV_data = "unique",
cofactors = NULL,
cof_red = FALSE,
cof_pval_sign = 0.1,
window = 20,
ref_par = NULL,
n.cores = 1,
maxIter = 100,
msMaxIter = 100
)
Arguments
mppData |
An object of class |
trait |
|
VCOV |
VCOV |
VCOV_data |
|
cofactors |
Object of class |
cof_red |
|
cof_pval_sign |
|
window |
|
ref_par |
Optional |
n.cores |
|
maxIter |
maximum number of iterations for the lme optimization algorithm. Default = 100. |
msMaxIter |
maximum number of iterations for the optimization step inside the lme optimization. Default = 100. |
Details
The estimated model is the following:
\underline{y}_{icj} = E_{j} + C_{cj} + \sum_{qc=1}^{n_{cof}} x_{i_{qc}p} + \beta_{pj} + x_{i_{q}p} * \beta_{pj} + \underline{GE}_{icj} + \underline{e}_{icj}
For further details see the vignette.
It is possible to calculate one initial VCOV using a null model with all
the cofactors (VCOV_data = "unique"
) or one VCOV per combination of
cofactors (VCOV_data = "minus_cof"
). In the later case, the cofactor
that fall witin a distance of window
on the left and right of a QTL
position is removed for the calculation of the initial VCOV. Therefore,
N_cof + 1 VCOV are calculated.
Value
Return:
CIM |
|
Author(s)
Vincent Garin
References
Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2021). nlme: Linear and Nonlinear Mixed Effects Models_. R package version 3.1-152, <URL: https://CRAN.R-project.org/package=nlme>.
Examples
data(mppData_GE)
cofactors <- mppData_GE$map$mk.names[c(35, 61)]
CIM <- mppGE_CIM(mppData = mppData_GE, trait = c('DMY_CIAM', 'DMY_TUM'),
cofactors = cofactors, window = 20)
Qpos <- QTL_select(CIM)
plot(CIM)
plot_allele_eff_GE(mppData = mppData_GE, nEnv = 2, EnvNames = c('CIAM', 'TUM'),
Qprof = CIM, Q.eff = 'par', QTL = Qpos, text.size = 14)