model_survival {mpmsim} | R Documentation |
Model mortality hazard, survivorship and age-specific survival probability using a mortality model
Description
Generates an actuarial life table based on a defined mortality model.
Usage
model_survival(params, age = NULL, model, truncate = 0.01)
model_mortality(params, age = NULL, model, truncate = 0.01)
Arguments
params |
Numeric vector representing the parameters of the mortality model. |
age |
Numeric vector representing age. The default is |
model |
A character string specifying the name of the mortality model to
be used. Options are |
truncate |
a value defining how the life table output should be
truncated. The default is |
Details
The required parameters varies depending on the mortality model. The parameters are provided as a vector.
*For gompertz
and weibull
, the
parameters are b0
, b1
.
*For gompertzmakeham
and weibullmakeham
the parameters are b0
, b1
and C
.
*For exponential
, the parameter is C
.
*For siler
, the parameters are a0
, a1
, C
, b0
and b1
.
Note that the parameters must be provided in the order mentioned here. x
represents age.
Gompertz:
Gompertz-Makeham:
Exponential:
Siler:
Weibull:
Weibull-Makeham:
In the output, the probability of survival (px
) (and death (qx
))
represent the probability of individuals that enter the age interval
survive until the end of the interval (or die before the end
of the interval). It is not possible to estimate a value for this in the
final row of the life table (because there is no
value) and
therefore the input values of
age
(x) may need to be extended to capture
this final interval.
Value
A dataframe in the form of a lifetable with columns for age (x
),
hazard (hx
), survivorship (lx
) and mortality (qx
) and survival
probability within interval (px
).
Author(s)
Owen Jones jones@biology.sdu.dk
References
Cox, D.R. & Oakes, D. (1984) Analysis of Survival Data. Chapman and Hall, London, UK.
Pinder III, J.E., Wiener, J.G. & Smith, M.H. (1978) The Weibull distribution: a method of summarizing survivorship data. Ecology, 59, 175–179.
Pletcher, S. (1999) Model fitting and hypothesis testing for age-specific mortality data. Journal of Evolutionary Biology, 12, 430–439.
Siler, W. (1979) A competing-risk model for animal mortality. Ecology, 60, 750–757.
Vaupel, J., Manton, K. & Stallard, E. (1979) The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography, 16, 439–454.
See Also
model_fertility()
to model age-specific fertility using various
functions.
Other trajectories:
model_fertility()
Examples
model_mortality(params = c(b_0 = 0.1, b_1 = 0.2), model = "Gompertz")
model_mortality(
params = c(b_0 = 0.1, b_1 = 0.2, C = 0.1),
model = "GompertzMakeham",
truncate = 0.1
)
model_mortality(params = c(c = 0.2), model = "Exponential", age = 0:10)
model_mortality(
params = c(a_0 = 0.1, a_1 = 0.2, C = 0.1, b_0 = 0.1, b_1 = 0.2),
model = "Siler",
age = 0:10
)
model_mortality(
params = c(b_0 = 1.4, b_1 = 0.18),
model = "Weibull"
)
model_mortality(
params = c(b_0 = 1.1, b_1 = 0.05, c = 0.2),
model = "WeibullMakeham"
)
model_mortality(params = c(b_0 = 0.1, b_1 = 0.2), model = "Gompertz")