confint.lframe {mpitbR} | R Documentation |
Extract the confidence intervals from the the estimated cross-sectional measures
Description
Extract the confidence intervals from the the estimated cross-sectional measures
Usage
## S3 method for class 'lframe'
confint(object, parm = "coefficient", level = 0.95, ...)
Arguments
object |
a "lframe"-class object |
parm |
"coefficient". Confidence intervals are only available for AF measure point estimates. |
level |
the confidence level required. |
... |
additional argument(s) for methods. |
Details
The confint
method for "lframe"-class objects find the confidence
intervals from the different AF measures estimates data frame. This method work for
only one measure c("M0","H","A","hd","hdk")
(Note that contribution measure
do no have confidence intervals). Then, user should subset the
data frame with the estimates by the chosen measure (including other preferred categories, i.e.,
poverty cut-off, subgroup, etc.)
Value
Confidence intervals extracted from the model lframe
object.
Author(s)
Ignacio Girela
See Also
coef
, and summary
methods, and mpitb.est
function.
Examples
library(mpitbR)
data <- subset(syn_cdta)
data <- na.omit(data)
svydata <- survey::svydesign(id=~psu, weights = ~weight, strata = ~stratum, data = data)
indicators <- list(d1 = c("d_nutr","d_cm"),
d2 = c("d_satt","d_educ"),
d3 = c("d_elct","d_sani","d_wtr","d_hsg","d_ckfl","d_asst"))
# Specify mpitb project
set <- mpitb.set(svydata, indicators = indicators, name = "myname", desc = "pref. desc")
# Estimate the cross-sectional MPI and compare non-annualized changes over time
est <- mpitb.est(set, klist = c(33), measures = "M0", indmeasures = NULL,
tvar = "t", cotmeasures = "M0",
weights = "equal", over = c("area"))
coef(subset(est$lframe, measure == "M0" & t == 1))
confint(subset(est$lframe, measure == "M0" & t == 1))
summary(subset(est$lframe, measure == "M0" & t == 1))
coef(subset(est$cotframe, measure == "M0"))
confint(subset(est$cotframe, measure == "M0"))
summary(subset(est$cotframe, measure == "M0" & ctype == "abs" & ann == 0 & k == 33))