tSNE {mp} | R Documentation |
t-Distributed Stochastic Neighbor Embedding
Description
Creates a k-dimensional representation of the data by modeling the probability of picking neighbors using a Gaussian for the high-dimensional data and t-Student for the low-dimensional map and then minimizing the KL divergence between them. This implementation uses the same default parameters as defined by the authors.
Usage
tSNE(X, Y = NULL, k = 2, perplexity = 30, n.iter = 1000, eta = 500,
initial.momentum = 0.5, final.momentum = 0.8, early.exaggeration = 4,
gain.fraction = 0.2, momentum.threshold.iter = 20,
exaggeration.threshold.iter = 100, max.binsearch.tries = 50)
Arguments
X |
A data frame, data matrix, dissimilarity (distance) matrix or dist object. |
Y |
Initial k-dimensional configuration. If NULL, the method uses a random initial configuration. |
k |
Target dimensionality. Avoid anything other than 2 or 3. |
perplexity |
A rough upper bound on the neighborhood size. |
n.iter |
Number of iterations to perform. |
eta |
The "learning rate" for the cost function minimization |
initial.momentum |
The initial momentum used before changing |
final.momentum |
The momentum to use on remaining iterations |
early.exaggeration |
The early exaggeration applied to intial iterations |
gain.fraction |
Undocumented |
momentum.threshold.iter |
Number of iterations before using the final momentum |
exaggeration.threshold.iter |
Number of iterations before using the real probabilities |
max.binsearch.tries |
Maximum number of tries in binary search for parameters to achieve the target perplexity |
Value
The k-dimensional representation of the data.
References
L.J.P. van der Maaten and G.E. Hinton. _Visualizing High-Dimensional Data Using t-SNE._ Journal of Machine Learning Research 9(Nov): 2579-2605, 2008.
Examples
# Iris example
emb <- tSNE(iris[, 1:4])
plot(emb, col=iris$Species)