predict {movieROC} | R Documentation |
Predict the classification regions for a particular specificity
Description
This function prints the classification subsets corresponding to a particular false-positive rate FPR
or to cutoff value(s) C
or XL, XU
introduced by the user.
Usage
## S3 method for class 'groc'
predict(object, FPR = NULL, C = NULL, XL = NULL, XU = NULL, ...)
## S3 method for class 'hroc'
predict(object, FPR = 0.15, ...)
Arguments
object |
An object of class ‘groc’ or ‘hroc’. |
FPR |
False-positive rate used to predict the classification region. Default: 0.15 if no cutoff value is provided by the next input parameters. |
C |
Cutoff value used to predict the classification region for ‘groc’ object with |
XL , XU |
Cutoff values used to predict the classification region for ‘groc’ object with |
... |
Other parameters to be passed. Not used. |
Value
A list of length 3 with the following fields:
ClassSubsets |
A matrix with the classification region. Number of rows indicate the number of intervals whose union defines the classification region. |
Specificity |
Resulting specificity value. |
Sensitivity |
Resulting sensitivity value. |
Examples
data(HCC)
roc <- gROC(X = HCC$cg18384097, D = HCC$tumor) # Right-sided ROC curve
predict(roc, FPR = 0.5)
groc <- gROC(X = HCC$cg18384097, D = HCC$tumor, side = "both") # gROC curve
predict(groc, FPR = 0.5)
hroc_cg18384097 <- hROC(X = HCC$cg18384097, D = HCC$tumor,
formula.lrm = "D ~ rcs(X,8)")
predict(hroc_cg18384097, FPR = 0.5)