plot {movieROC} | R Documentation |
Plot an ROC curve
Description
This is one of the core functions of the movieROC package. It displays the empirical ROC curve estimate from an object of class ‘groc’, ‘hroc’, or ‘multiroc’.
Usage
## S3 method for class 'groc'
plot(x, xlim = c(0, 1), ylim = c(0, 1), lwd = 3,
xlab = "False-Positive Rate", ylab = "True-Positive Rate", main = "ROC curve",
cex.lab = 1.25, cex.main = 1.5, type = NULL, new = TRUE, ...)
## S3 method for class 'hroc'
plot(x, type = 'S', xlim = c(0,1), ylim = c(0,1),
lwd = 3, xlab = "False-Positive Rate", ylab = "True-Positive Rate",
main = "ROC Curve", cex.lab = 1.25, cex.main = 1.5, new = TRUE, ...)
## S3 method for class 'multiroc'
plot(x, ...)
Arguments
x |
An ROC curve object from movieROC package. Possible classes are: ‘groc’ (output of |
xlim , ylim |
Range for x- and y-axis. Default: unit interval. |
lwd |
Line width of the ROC curve. Default: 3. |
xlab , ylab |
Label for x- and y-axis. |
main |
Title for the plot. |
cex.lab , cex.main |
The magnification to be used for labels and main title, respectively, relative to the current setting of |
type |
What type of plot should be drawn (see help from |
new |
If TRUE, a new plot is displayed; otherwise, the ROC curve is plotted over the existing graphic. Default: TRUE. |
... |
Other graphical parameters to be passed. |
Value
A plot of the ROC curve with the selected graphical parameters
Examples
data(HCC)
# ROC curve estimates for gene 03515901 and response tumor
rroc <- gROC(X = HCC[,"cg03515901"], D = HCC$tumor) # Right-sided
lroc <- gROC(X = HCC[,"cg03515901"], D = HCC$tumor, side = "left") # Left-sided
hroc <- hROC(X = HCC[,"cg03515901"], D = HCC$tumor) # Transformed by a cubic polinomial
plot(rroc, lty = 2, frame = FALSE)
plot(lroc, new = FALSE)
plot(hroc, new = FALSE, col = "blue")
legend("topleft", legend = c("Right-sided", "Left-sided", "Transformed marker"),
col = c("black", "black", "blue"), lty = c(1,2,1), lwd = 2, bty = "n")
# ROC curve estimate for genes 20202438 and 18384097 to simultaneously identify tumor
# by a logistic regression model with quadratic formula
biroc <- multiROC(X = cbind(HCC$cg20202438, HCC$cg18384097), D = HCC$tumor)
plot(biroc)
legend("bottomright", paste("AUC = ", format(biroc$auc, digits = 3)))
# ROC curve estimate for genes 20202438, 18384097 and 03515901 to simultaneously
# identify tumor by a linear combinations with fixed parameters by Pepe and Thompson (2000)
multiroc <- multiROC(X = cbind(HCC$cg20202438, HCC$cg18384097, HCC$cg03515901),
D = HCC$tumor, method = "fixedLinear", methodLinear = "PepeThompson")
plot(multiroc)
legend("bottomright", paste("AUC = ", format(multiroc$auc, digits = 3)))