Motif Analysis in Multi-Level Networks


[Up] [Top]

Documentation for package ‘motifr’ version 1.0.0

Help Pages

compare_to_baseline Compare motif occurence in empirical network to occurence in a baseline model
count_motifs Count multi-level motifs
critical_dyads List critical dyads
directed_dummy_net Two-level directed network dummy example
dummy_net Three-level network dummy example
edge_contribution List edge contribution
exemplify_motif Returns an example for a motif found in a given network
explore_motifs Explore the motif zoo interactively in a shiny app
identify_gaps List gaps
induced_level_subgraph Returns subgraph induced by one level of the network
is.directed Checks whether the given network is directed
large_directed_dummy_net Large two-level directed network dummy example
list_motifs Lists motifs of a given class or all motifs with a given signature
ml_net Two-level network example (wetlands management)
motifs_distribution Compute statistical properties (expectation and variance) of the distribution of motifs in a baseline model
motif_summary Summary for motif counts and Erdős-Rényi distribution
plot_critical_dyads Plot critical dyads in network visualisation
plot_gaps Plot gaps in network visualisation
plot_gaps_or_critical_dyads Helper function for plotting gaps and critical edges
plot_mnet Visualize a multi-level network (using ggraph)
show_motif Plots an example for a motif with given motif identifier string taken from the given graph.
simulate_baseline Simulate a baseline baseline model
supported_classes Lists all supported motif classes for a given signature
supported_signatures Lists all supported signatures
tidygraph_dummy_net Two-level tidygraph network example
to_py_graph Translate multi-level statnet or igraph network object to Python networkx object
update_motifr Checks for updates for motifr's Python core, the sma package