| multiscale.bottomUp {mosum} | R Documentation | 
Multiscale MOSUM algorithm with bottom-up merging
Description
Multiscale MOSUM procedure with symmetric bandwidths combined with bottom-up bandwidth-based merging.
Usage
multiscale.bottomUp(
  x,
  G = bandwidths.default(length(x), G.min = max(20, ceiling(0.05 * length(x)))),
  threshold = c("critical.value", "custom")[1],
  alpha = 0.1,
  threshold.function = NULL,
  eta = 0.4,
  do.confint = FALSE,
  level = 0.05,
  N_reps = 1000,
  ...
)
Arguments
| x | input data (a  | 
| G | a vector of (symmetric) bandwidths, given as either integers less than  | 
| threshold | string indicating which threshold should be used to determine significance.
By default, it is chosen from the asymptotic distribution at the given significance level  | 
| alpha | a numeric value for the significance level with
 | 
| threshold.function | function object of form  | 
| eta | see mosum | 
| do.confint | flag indicating whether to compute the confidence intervals for change points | 
| level | use iff  | 
| N_reps | use iff  | 
| ... | further arguments to be passed to the mosum calls | 
Details
See Algorithm 1 in the first referenced paper for a comprehensive description of the procedure and further details.
Value
S3 object of class multiscale.cpts, which contains the following fields:
| x | input data | 
| cpts | estimated change points | 
| cpts.info | data frame containing information about estimated change points | 
| pooled.cpts | set of change point candidates that have been considered by the algorithm | 
| G | bandwidths | 
| threshold,alpha,threshold.function | input parameters | 
| eta | input parameters | 
| do.confint | input parameter | 
| ci | object of class  | 
References
A. Meier, C. Kirch and H. Cho (2021) mosum: A Package for Moving Sums in Change-point Analysis. Journal of Statistical Software, Volume 97, Number 8, pp. 1-42. <doi:10.18637/jss.v097.i08>.
M. Messer et al. (2014) A multiple filter test for the detection of rate changes in renewal processes with varying variance. The Annals of Applied Statistics, Volume 8, Number 4, pp. 2027-2067.
H. Cho and C. Kirch (2022) Bootstrap confidence intervals for multiple change points based on moving sum procedures. Computational Statistics & Data Analysis, Volume 175, pp. 107552.
Examples
x1 <- testData(lengths = c(100, 200, 300, 300), 
means = c(0, 1, 2, 2.7), sds = rep(1, 4), seed = 123)$x
mbu1 <- multiscale.bottomUp(x1)
plot(mbu1)
summary(mbu1)
x2 <- testData(model = "mix", seed = 1234)$x
threshold.custom <- function(G, n, alpha) {
mosum.criticalValue(n, G, G, alpha) * log(n/G)^0.1
}
mbu2 <- multiscale.bottomUp(x2, G = 10:40, threshold = "custom",
threshold.function = threshold.custom)
plot(mbu2)
summary(mbu2)