multiscale.bottomUp {mosum} | R Documentation |
Multiscale MOSUM algorithm with bottom-up merging
Description
Multiscale MOSUM procedure with symmetric bandwidths combined with bottom-up bandwidth-based merging.
Usage
multiscale.bottomUp(
x,
G = bandwidths.default(length(x), G.min = max(20, ceiling(0.05 * length(x)))),
threshold = c("critical.value", "custom")[1],
alpha = 0.1,
threshold.function = NULL,
eta = 0.4,
do.confint = FALSE,
level = 0.05,
N_reps = 1000,
...
)
Arguments
x |
input data (a |
G |
a vector of (symmetric) bandwidths, given as either integers less than |
threshold |
string indicating which threshold should be used to determine significance.
By default, it is chosen from the asymptotic distribution at the given significance level |
alpha |
a numeric value for the significance level with
|
threshold.function |
function object of form |
eta |
see mosum |
do.confint |
flag indicating whether to compute the confidence intervals for change points |
level |
use iff |
N_reps |
use iff |
... |
further arguments to be passed to the mosum calls |
Details
See Algorithm 1 in the first referenced paper for a comprehensive description of the procedure and further details.
Value
S3 object of class multiscale.cpts
, which contains the following fields:
x |
input data |
cpts |
estimated change points |
cpts.info |
data frame containing information about estimated change points |
pooled.cpts |
set of change point candidates that have been considered by the algorithm |
G |
bandwidths |
threshold , alpha , threshold.function |
input parameters |
eta |
input parameters |
do.confint |
input parameter |
ci |
object of class |
References
A. Meier, C. Kirch and H. Cho (2021) mosum: A Package for Moving Sums in Change-point Analysis. Journal of Statistical Software, Volume 97, Number 8, pp. 1-42. <doi:10.18637/jss.v097.i08>.
M. Messer et al. (2014) A multiple filter test for the detection of rate changes in renewal processes with varying variance. The Annals of Applied Statistics, Volume 8, Number 4, pp. 2027-2067.
H. Cho and C. Kirch (2022) Bootstrap confidence intervals for multiple change points based on moving sum procedures. Computational Statistics & Data Analysis, Volume 175, pp. 107552.
Examples
x1 <- testData(lengths = c(100, 200, 300, 300),
means = c(0, 1, 2, 2.7), sds = rep(1, 4), seed = 123)$x
mbu1 <- multiscale.bottomUp(x1)
plot(mbu1)
summary(mbu1)
x2 <- testData(model = "mix", seed = 1234)$x
threshold.custom <- function(G, n, alpha) {
mosum.criticalValue(n, G, G, alpha) * log(n/G)^0.1
}
mbu2 <- multiscale.bottomUp(x2, G = 10:40, threshold = "custom",
threshold.function = threshold.custom)
plot(mbu2)
summary(mbu2)