multiRun {morpheus} | R Documentation |
multiRun
Description
Estimate N times some parameters, outputs of some list of functions. This method is thus very generic, allowing typically bootstrap or Monte-Carlo estimations of matrices mu or beta. Passing a list of functions opens the possibility to compare them on a fair basis (exact same inputs). It's even possible to compare methods on some deterministic design of experiments.
Usage
multiRun(
fargs,
estimParams,
prepareArgs = function(x, i) x,
N = 10,
ncores = 3,
agg = lapply,
verbose = FALSE
)
Arguments
fargs |
List of arguments for the estimation functions |
estimParams |
List of nf function(s) to apply on fargs |
prepareArgs |
Prepare arguments for the functions inside estimParams |
N |
Number of runs |
ncores |
Number of cores for parallel runs (<=1: sequential) |
agg |
Aggregation method (default: lapply) |
verbose |
TRUE to indicate runs + methods numbers |
Value
A list of nf aggregates of N results (matrices).
Examples
## Not run:
beta <- matrix(c(1,-2,3,1),ncol=2)
# Bootstrap + computeMu, morpheus VS flexmix
io <- generateSampleIO(n=1000, p=1/2, beta=beta, b=c(0,0), "logit")
mu <- normalize(beta)
res <- multiRun(list(X=io$X,Y=io$Y,K=2), list(
# morpheus
function(fargs) {
library(morpheus)
ind <- fargs$ind
computeMu(fargs$X[ind,], fargs$Y[ind], list(K=fargs$K))
},
# flexmix
function(fargs) {
library(flexmix)
ind <- fargs$ind
K <- fargs$K
dat <- as.data.frame( cbind(fargs$Y[ind],fargs$X[ind,]) )
out <- refit( flexmix( cbind(V1, 1 - V1) ~ 0+., data=dat, k=K,
model=FLXMRglm(family="binomial") ) )
normalize( matrix(out@coef[1:(ncol(fargs$X)*K)], ncol=K) )
} ),
prepareArgs = function(fargs,index) {
if (index == 1)
fargs$ind <- 1:nrow(fargs$X)
else
fargs$ind <- sample(1:nrow(fargs$X),replace=TRUE)
fargs
}, N=10, ncores=3)
for (i in 1:2)
res[[i]] <- alignMatrices(res[[i]], ref=mu, ls_mode="exact")
# Monte-Carlo + optimParams from X,Y, morpheus VS flexmix
res <- multiRun(list(n=1000,p=1/2,beta=beta,b=c(0,0),link="logit"), list(
# morpheus
function(fargs) {
library(morpheus)
K <- fargs$K
mu <- computeMu(fargs$X, fargs$Y, list(K=fargs$K))
o <- optimParams(fargs$X, fargs$Y, fargs$K, fargs$link, fargs$M)
o$run(list(beta=mu))$beta
},
# flexmix
function(fargs) {
library(flexmix)
K <- fargs$K
dat <- as.data.frame( cbind(fargs$Y,fargs$X) )
out <- refit( flexmix( cbind(V1, 1 - V1) ~ ., data=dat, k=K,
model=FLXMRglm(family="binomial") ) )
sapply( seq_len(K), function(i)
as.double( out@components[[1]][[i]][2:(1+ncol(fargs$X)),1] ) )
} ),
prepareArgs = function(fargs,index) {
library(morpheus)
io <- generateSampleIO(fargs$n, fargs$p, fargs$beta, fargs$b, fargs$link)
fargs$X <- io$X
fargs$Y <- io$Y
fargs$K <- ncol(fargs$beta)
fargs$link <- fargs$link
fargs$M <- computeMoments(io$X,io$Y)
fargs
}, N=10, ncores=3)
for (i in 1:2)
res[[i]] <- alignMatrices(res[[i]], ref=beta, ls_mode="exact")
## End(Not run)
[Package morpheus version 1.0-4 Index]