vorobT {moocore} | R Documentation |
Vorob'ev computations
Description
Compute Vorob'ev threshold, expectation and deviation. Also, displaying the symmetric deviation function is possible. The symmetric deviation function is the probability for a given target in the objective space to belong to the symmetric difference between the Vorob'ev expectation and a realization of the (random) attained set.
Usage
vorobT(x, sets, reference, maximise = FALSE)
vorobDev(x, sets, reference, VE = NULL, maximise = FALSE)
Arguments
x |
|
sets |
|
reference |
|
maximise |
|
VE |
|
Value
vorobT
returns a list with elements threshold
,
VE
, and avg_hyp
(average hypervolume)
vorobDev
returns the Vorob'ev deviation.
Author(s)
Mickael Binois
References
M Binois, D Ginsbourger, O Roustant (2015). “Quantifying uncertainty on Pareto fronts with Gaussian process conditional simulations.” European Journal of Operational Research, 243(2), 386–394. doi: 10.1016/j.ejor.2014.07.032.
C. Chevalier (2013), Fast uncertainty reduction strategies relying on Gaussian process models, University of Bern, PhD thesis.
Ilya Molchanov (2005). Theory of Random Sets. Springer.
Examples
data(CPFs)
res <- vorobT(CPFs, reference = c(2, 200))
res$threshold
res$avg_hyp
# Now print Vorob'ev deviation
VD <- vorobDev(CPFs, VE = res$VE, reference = c(2, 200))
VD