bimonotone {monotone} | R Documentation |
Bivariate Monotone Regression Function
Description
bimonotone
performs bivariate monotone regression.
The function uses the up-and-down-blocks implementation (Kruskal, 1964)
of the pool-adjacent-violators algorithm (Ayer, Brunk, Ewing, Reid, and Silverman, 1955),
with additional lookaheads, repeatedly, for both rows and columns, until convergence.
Usage
bimonotone(
x,
w = matrix(1, nrow(x), ncol(x)),
maxiter = 65536,
eps = 1.49011611938477e-08
)
Arguments
x |
a real-valued matrix. |
w |
a real-valued matrix with positive weights (default a matrix with ones). |
maxiter |
maximum number of iterations (default = 65536) |
eps |
precision of estimates (default = 1.4901161193847656e-08) |
Details
Error checking on x
, w
, maxiter
, or eps
is not present.
Value
Returns a real-valued matrix with values of both rows and columns of x
in monotone order.
References
Bril G, Dykstra R, Pillers C, Robertson T (1984). Algorithm AS 206: isotonic regression in two independent variables. Journal of the Royal Statistical Society. Series C (Applied Statistics), 33(3), 352-357. URL https://www.jstor.org/stable/pdf/2347723.pdf.
Busing, F.M.T.A. (2022). Monotone Regression: A Simple and Fast O(n) PAVA Implementation. Journal of Statistical Software, Code Snippets, 102 (1), pp. 1-25. (<doi:10.18637/jss.v102.c01>)
Dykstra R.L., Robertson T. (1982). An algorithm for isotonic regression for two or more independent variables. The Annals of Statistics, 10(3), 708-716. URL https: //projecteuclid.org/download/pdf_1/euclid.aos/1176345866.
Turner, T.R. (2019). Iso: Functions to Perform Isotonic Regression. R package version 0.0-18. URL https://cran.r-project.org/package=Iso
Examples
G <- matrix( c( 1, 5.2, 0.1, 0.1, 5, 0, 6, 2, 3, 5.2, 5, 7, 4, 5.5, 6, 6 ), 4, 4 )
print( G )
H <- bimonotone( G )
print( H )
y <- c( 8, 4, 8, 2, 2, 0, 8 )
x <- bimonotone( as.matrix( y ) )
print( x )
x <- bimonotone( t( as.matrix( y ) ) )
print( x )